\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra listgcd.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package HEUGCD HeuGcd} <<package HEUGCD HeuGcd>>= )abbrev package HEUGCD HeuGcd ++ Author: P.Gianni ++ Date Created: ++ Date Last Updated: 13 September 94 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package provides the functions for the heuristic integer gcd. ++ Geddes's algorithm,for univariate polynomials with integer coefficients HeuGcd (BP):C == T where BP : UnivariatePolynomialCategory Integer Z ==> Integer ContPrim ==> Record(cont:Z,prim:BP) C == with gcd : List BP -> BP ++ gcd([f1,..,fk]) = gcd of the polynomials fi. gcdprim : List BP -> BP ++ gcdprim([f1,..,fk]) = gcd of k PRIMITIVE univariate polynomials gcdcofact : List BP -> List BP ++ gcdcofact([f1,..fk]) = gcd and cofactors of k univariate polynomials. gcdcofactprim: List BP -> List BP ++ gcdcofactprim([f1,..fk]) = gcd and cofactors of k ++ primitive polynomials. content : List BP -> List Z ++ content([f1,..,fk]) = content of a list of univariate polynonials lintgcd : List Z -> Z ++ lintgcd([a1,..,ak]) = gcd of a list of integers T == add PI ==> PositiveInteger NNI ==> NonNegativeInteger Cases ==> Union("gcdprim","gcd","gcdcofactprim","gcdcofact") import ModularDistinctDegreeFactorizer BP --local functions localgcd : List BP -> List BP constNotZero : BP -> Boolean height : BP -> PI genpoly : (Z,PI) -> BP negShiftz : (Z,PI) -> Z internal : (Cases,List BP ) -> List BP constcase : (List NNI ,List BP ) -> List BP lincase : (List NNI ,List BP ) -> List BP myNextPrime : ( Z , NNI ) -> Z bigPrime:= prevPrime(2**26)$IntegerPrimesPackage(Integer) myNextPrime(val:Z,bound:NNI) : Z == nextPrime(val)$IntegerPrimesPackage(Z) constNotZero(f : BP ) : Boolean == (degree f = 0) and not (zero? f) negShiftz(n:Z,Modulus:PI):Z == n < 0 => n:= n+Modulus n > (Modulus quo 2) => n-Modulus n --compute the height of a polynomial height(f:BP):PI == k:PI:=1 while f~=0 repeat k:=max(k,abs(leadingCoefficient(f)@Z)::PI) f:=reductum f k --reconstruct the polynomial from the value-adic representation of --dval. genpoly(dval:Z,value:PI):BP == d:=0$BP val:=dval for i in 0.. while (val~=0) repeat val1:=negShiftz(val rem value,value) d:= d+monomial(val1,i) val:=(val-val1) quo value d --gcd of a list of integers lintgcd(lval:List(Z)):Z == empty? lval => 0$Z member?(1,lval) => 1$Z lval:=sort(#1<#2,lval) val:=lval.first for val1 in lval.rest while not (val=1) repeat val:=gcd(val,val1) val --content for a list of univariate polynomials content(listf:List BP ):List(Z) == [lintgcd coefficients f for f in listf] --content of a list of polynomials with the relative primitive parts contprim(listf:List BP ):List(ContPrim) == [[c:=lintgcd coefficients f,(f exquo c)::BP]$ContPrim for f in listf] -- one polynomial is constant, remark that they are primitive -- but listf can contain the zero polynomial constcase(listdeg:List NNI ,listf:List BP ): List BP == lind:=select(constNotZero,listf) empty? lind => member?(1,listdeg) => lincase(listdeg,listf) localgcd listf or/[n>0 for n in listdeg] => cons(1$BP,listf) lclistf:List(Z):= [leadingCoefficient f for f in listf] d:=lintgcd(lclistf) d=1 => cons(1$BP,listf) cons(d::BP,[(lcf quo d)::BP for lcf in lclistf]) testDivide(listf: List BP, g:BP):Union(List BP, "failed") == result:List BP := [] for f in listf repeat if (f1:=f exquo g) case "failed" then return "failed" result := cons(f1::BP,result) reverse!(result) --one polynomial is linear, remark that they are primitive lincase(listdeg:List NNI ,listf:List BP ):List BP == n:= position(1,listdeg) g:=listf.n result:=[g] for f in listf repeat if (f1:=f exquo g) case "failed" then return cons(1$BP,listf) result := cons(f1::BP,result) reverse(result) IMG := InnerModularGcd(Z,BP,67108859,myNextPrime) mindegpol(f:BP, g:BP):BP == degree(g) < degree (f) => g f --local function for the gcd among n PRIMITIVE univariate polynomials localgcd(listf:List BP ):List BP == hgt:="min"/[height(f) for f in listf| not zero? f] answr:=2+2*hgt minf := "mindegpol"/[f for f in listf| not zero? f] (result := testDivide(listf, minf)) case List(BP) => cons(minf, result::List BP) if degree minf < 100 then for k in 1..10 repeat listval:=[f answr for f in listf] dval:=lintgcd(listval) dd:=genpoly(dval,answr) contd:=content(dd) d:=(dd exquo contd)::BP result:List BP :=[d] flag : Boolean := true for f in listf while flag repeat (f1:=f exquo d) case "failed" => flag:=false result := cons (f1::BP,result) if flag then return reverse(result) nvalue:= answr*832040 quo 317811 if ((nvalue + answr) rem 2) = 0 then nvalue:=nvalue+1 answr:=nvalue::PI gg:=modularGcdPrimitive(listf)$IMG cons(gg,[(f exquo gg) :: BP for f in listf]) --internal function:it evaluates the gcd and avoids duplication of --code. internal(flag:Cases,listf:List BP ):List BP == --special cases listf=[] => [1$BP] (nlf:=#listf)=1 => [first listf,1$BP] minpol:=1$BP -- extract a monomial gcd mdeg:= "min"/[minimumDegree f for f in listf] if mdeg>0 then minpol1:= monomial(1,mdeg) listf:= [(f exquo minpol1)::BP for f in listf] minpol:=minpol*minpol1 -- make the polynomials primitive Cgcd:List(Z):=[] contgcd : Z := 1 if (flag case "gcd") or (flag case "gcdcofact") then contlistf:List(ContPrim):=contprim(listf) Cgcd:= [term.cont for term in contlistf] contgcd:=lintgcd(Cgcd) listf:List BP :=[term.prim for term in contlistf] minpol:=contgcd*minpol listdeg:=[degree f for f in listf ] f:= first listf for g in rest listf repeat f:=gcd(f,g,bigPrime) if degree f = 0 then return cons(minpol,listf) ans:List BP := --one polynomial is constant member?(0,listdeg) => constcase(listdeg,listf) --one polynomial is linear member?(1,listdeg) => lincase(listdeg,listf) localgcd(listf) (result,ans):=(first ans*minpol,rest ans) if (flag case "gcdcofact") then ans:= [(p quo contgcd)*q for p in Cgcd for q in ans] cons(result,ans) --gcd among n PRIMITIVE univariate polynomials gcdprim (listf:List BP ):BP == first internal("gcdprim",listf) --gcd and cofactors for n PRIMITIVE univariate polynomials gcdcofactprim(listf:List BP ):List BP == internal("gcdcofactprim",listf) --gcd for n generic univariate polynomials. gcd(listf:List BP ): BP == first internal("gcd",listf) --gcd and cofactors for n generic univariate polynomials. gcdcofact (listf:List BP ):List BP == internal("gcdcofact",listf) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package HEUGCD HeuGcd>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}