\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra list.spad} \author{Michael Monagon, Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain ILIST IndexedList} <>= )abbrev domain ILIST IndexedList ++ Author: Michael Monagan ++ Date Created: Sep 1987 ++ Change History: ++ Basic Operations: ++ \#, concat, concat!, construct, copy, elt, elt, empty, ++ empty?, eq?, first, member?, merge!, mergeSort, minIndex, ++ parts, removeDuplicates!, rest, rest, reverse, reverse!, ++ setelt, setfirst!, setrest!, sort!, split! ++ Related Constructors: List ++ Also See: ++ AMS Classification: ++ Keywords: list, aggregate, index ++ Description: ++ \spadtype{IndexedList} is a basic implementation of the functions ++ in \spadtype{ListAggregate}, often using functions in the underlying ++ LISP system. The second parameter to the constructor (\spad{mn}) ++ is the beginning index of the list. That is, if \spad{l} is a ++ list, then \spad{elt(l,mn)} is the first value. This constructor ++ is probably best viewed as the implementation of singly-linked ++ lists that are addressable by index rather than as a mere wrapper ++ for LISP lists. IndexedList(S:Type, mn:Integer): Exports == Implementation where cycleMax ==> 1000 -- value used in checking for cycles -- The following seems to be a bit out of date, but is kept in case -- a knowledgeable person wants to update it: -- The following LISP dependencies are divided into two groups -- Those that are required -- CONS, EQ, NIL, NULL, QCAR, QCDR, RPLACA, RPLACD -- Those that are included for efficiency only -- NEQ, LIST, CAR, CDR, NCONC2, NREVERSE, LENGTH -- Also REVERSE, since it's called in Polynomial Ring Qfirst ==> QCAR$Lisp Qrest ==> QCDR$Lisp Qnull ==> NULL$Lisp Qeq ==> EQ$Lisp Qneq ==> NEQ$Lisp Qcons ==> CONS$Lisp Qpush ==> PUSH$Lisp Exports ==> ListAggregate S Implementation ==> add #x == LENGTH(x)$Lisp concat(s:S,x:%) == CONS(s,x)$Lisp eq?(x,y) == EQ(x,y)$Lisp first x == SPADfirst(x)$Lisp elt(x,"first") == SPADfirst(x)$Lisp empty() == NIL$Lisp empty? x == NULL(x)$Lisp rest x == CDR(x)$Lisp elt(x,"rest") == CDR(x)$Lisp setfirst_!(x,s) == empty? x => error "Cannot update an empty list" Qfirst RPLACA(x,s)$Lisp setelt(x,"first",s) == empty? x => error "Cannot update an empty list" Qfirst RPLACA(x,s)$Lisp setrest_!(x,y) == empty? x => error "Cannot update an empty list" Qrest RPLACD(x,y)$Lisp setelt(x,"rest",y) == empty? x => error "Cannot update an empty list" Qrest RPLACD(x,y)$Lisp construct l == l pretend % parts s == s pretend List S reverse_! x == NREVERSE(x)$Lisp reverse x == REVERSE(x)$Lisp minIndex x == mn rest(x, n) == for i in 1..n repeat if Qnull x then error "index out of range" x := Qrest x x copy x == y := empty() for i in 0.. while not Qnull x repeat if Qeq(i,cycleMax) and cyclic? x then error "cyclic list" y := Qcons(Qfirst x,y) x := Qrest x (NREVERSE(y)$Lisp)@% if S has SetCategory then coerce(x):OutputForm == -- displays cycle with overbar over the cycle y := empty()$List(OutputForm) s := cycleEntry x while Qneq(x, s) repeat y := concat((first x)::OutputForm, y) x := rest x y := reverse_! y empty? s => bracket y -- cyclic case: z is cylic part z := list((first x)::OutputForm) while Qneq(s, rest x) repeat x := rest x z := concat((first x)::OutputForm, z) bracket concat_!(y, overbar commaSeparate reverse_! z) x = y == Qeq(x,y) => true while not Qnull x and not Qnull y repeat Qfirst x ^=$S Qfirst y => return false x := Qrest x y := Qrest y Qnull x and Qnull y latex(x : %): String == s : String := "\left[" while not Qnull x repeat s := concat(s, latex(Qfirst x)$S)$String x := Qrest x if not Qnull x then s := concat(s, ", ")$String concat(s, " \right]")$String member?(s,x) == while not Qnull x repeat if s = Qfirst x then return true else x := Qrest x false -- Lots of code from parts of AGGCAT, repeated here to -- get faster compilation concat_!(x:%,y:%) == Qnull x => Qnull y => x Qpush(first y,x) QRPLACD(x,rest y)$Lisp x z:=x while not Qnull Qrest z repeat z:=Qrest z QRPLACD(z,y)$Lisp x -- Then a quicky: if S has SetCategory then removeDuplicates_! l == p := l while not Qnull p repeat -- p := setrest_!(p, remove_!(#1 = Qfirst p, Qrest p)) -- far too expensive - builds closures etc. pp:=p f:S:=Qfirst p p:=Qrest p while not Qnull (pr:=Qrest pp) repeat if (Qfirst pr)@S = f then QRPLACD(pp,Qrest pr)$Lisp else pp:=pr l -- then sorting mergeSort: ((S, S) -> Boolean, %, Integer) -> % sort_!(f, l) == mergeSort(f, l, #l) merge_!(f, p, q) == Qnull p => q Qnull q => p Qeq(p, q) => error "cannot merge a list into itself" if f(Qfirst p, Qfirst q) then (r := t := p; p := Qrest p) else (r := t := q; q := Qrest q) while not Qnull p and not Qnull q repeat if f(Qfirst p, Qfirst q) then (QRPLACD(t, p)$Lisp; t := p; p := Qrest p) else (QRPLACD(t, q)$Lisp; t := q; q := Qrest q) QRPLACD(t, if Qnull p then q else p)$Lisp r split_!(p, n) == n < 1 => error "index out of range" p := rest(p, (n - 1)::NonNegativeInteger) q := Qrest p QRPLACD(p, NIL$Lisp)$Lisp q mergeSort(f, p, n) == if n = 2 and f(first rest p, first p) then p := reverse_! p n < 3 => p l := (n quo 2)::NonNegativeInteger q := split_!(p, l) p := mergeSort(f, p, l) q := mergeSort(f, q, n - l) merge_!(f, p, q) @ \section{ILIST.lsp BOOTSTRAP} {\bf ILIST} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf ILIST} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf ILIST.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (|/VERSIONCHECK| 2) (PUT (QUOTE |ILIST;#;$Nni;1|) (QUOTE |SPADreplace|) (QUOTE LENGTH)) (DEFUN |ILIST;#;$Nni;1| (|x| |$|) (LENGTH |x|)) (PUT (QUOTE |ILIST;concat;S2$;2|) (QUOTE |SPADreplace|) (QUOTE CONS)) (DEFUN |ILIST;concat;S2$;2| (|s| |x| |$|) (CONS |s| |x|)) (PUT (QUOTE |ILIST;eq?;2$B;3|) (QUOTE |SPADreplace|) (QUOTE EQ)) (DEFUN |ILIST;eq?;2$B;3| (|x| |y| |$|) (EQ |x| |y|)) (PUT (QUOTE |ILIST;first;$S;4|) (QUOTE |SPADreplace|) (QUOTE |SPADfirst|)) (DEFUN |ILIST;first;$S;4| (|x| |$|) (|SPADfirst| |x|)) (PUT (QUOTE |ILIST;elt;$firstS;5|) (QUOTE |SPADreplace|) (QUOTE (XLAM (|x| "first") (|SPADfirst| |x|)))) (DEFUN |ILIST;elt;$firstS;5| (|x| G101995 |$|) (|SPADfirst| |x|)) (PUT (QUOTE |ILIST;empty;$;6|) (QUOTE |SPADreplace|) (QUOTE (XLAM NIL NIL))) (DEFUN |ILIST;empty;$;6| (|$|) NIL) (PUT (QUOTE |ILIST;empty?;$B;7|) (QUOTE |SPADreplace|) (QUOTE NULL)) (DEFUN |ILIST;empty?;$B;7| (|x| |$|) (NULL |x|)) (PUT (QUOTE |ILIST;rest;2$;8|) (QUOTE |SPADreplace|) (QUOTE CDR)) (DEFUN |ILIST;rest;2$;8| (|x| |$|) (CDR |x|)) (PUT (QUOTE |ILIST;elt;$rest$;9|) (QUOTE |SPADreplace|) (QUOTE (XLAM (|x| "rest") (CDR |x|)))) (DEFUN |ILIST;elt;$rest$;9| (|x| G102000 |$|) (CDR |x|)) (DEFUN |ILIST;setfirst!;$2S;10| (|x| |s| |$|) (COND ((SPADCALL |x| (QREFELT |$| 17)) (|error| "Cannot update an empty list")) ((QUOTE T) (QCAR (RPLACA |x| |s|))))) (DEFUN |ILIST;setelt;$first2S;11| (|x| G102005 |s| |$|) (COND ((SPADCALL |x| (QREFELT |$| 17)) (|error| "Cannot update an empty list")) ((QUOTE T) (QCAR (RPLACA |x| |s|))))) (DEFUN |ILIST;setrest!;3$;12| (|x| |y| |$|) (COND ((SPADCALL |x| (QREFELT |$| 17)) (|error| "Cannot update an empty list")) ((QUOTE T) (QCDR (RPLACD |x| |y|))))) (DEFUN |ILIST;setelt;$rest2$;13| (|x| G102010 |y| |$|) (COND ((SPADCALL |x| (QREFELT |$| 17)) (|error| "Cannot update an empty list")) ((QUOTE T) (QCDR (RPLACD |x| |y|))))) (PUT (QUOTE |ILIST;construct;L$;14|) (QUOTE |SPADreplace|) (QUOTE (XLAM (|l|) |l|))) (DEFUN |ILIST;construct;L$;14| (|l| |$|) |l|) (PUT (QUOTE |ILIST;parts;$L;15|) (QUOTE |SPADreplace|) (QUOTE (XLAM (|s|) |s|))) (DEFUN |ILIST;parts;$L;15| (|s| |$|) |s|) (PUT (QUOTE |ILIST;reverse!;2$;16|) (QUOTE |SPADreplace|) (QUOTE NREVERSE)) (DEFUN |ILIST;reverse!;2$;16| (|x| |$|) (NREVERSE |x|)) (PUT (QUOTE |ILIST;reverse;2$;17|) (QUOTE |SPADreplace|) (QUOTE REVERSE)) (DEFUN |ILIST;reverse;2$;17| (|x| |$|) (REVERSE |x|)) (DEFUN |ILIST;minIndex;$I;18| (|x| |$|) (QREFELT |$| 7)) (DEFUN |ILIST;rest;$Nni$;19| (|x| |n| |$|) (PROG (|i|) (RETURN (SEQ (SEQ (LETT |i| 1 |ILIST;rest;$Nni$;19|) G190 (COND ((QSGREATERP |i| |n|) (GO G191))) (SEQ (COND ((NULL |x|) (|error| "index out of range"))) (EXIT (LETT |x| (QCDR |x|) |ILIST;rest;$Nni$;19|))) (LETT |i| (QSADD1 |i|) |ILIST;rest;$Nni$;19|) (GO G190) G191 (EXIT NIL)) (EXIT |x|))))) (DEFUN |ILIST;copy;2$;20| (|x| |$|) (PROG (|i| |y|) (RETURN (SEQ (LETT |y| (SPADCALL (QREFELT |$| 16)) |ILIST;copy;2$;20|) (SEQ (LETT |i| 0 |ILIST;copy;2$;20|) G190 (COND ((NULL (COND ((NULL |x|) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (COND ((EQ |i| 1000) (COND ((SPADCALL |x| (QREFELT |$| 33)) (|error| "cyclic list"))))) (LETT |y| (CONS (QCAR |x|) |y|) |ILIST;copy;2$;20|) (EXIT (LETT |x| (QCDR |x|) |ILIST;copy;2$;20|))) (LETT |i| (QSADD1 |i|) |ILIST;copy;2$;20|) (GO G190) G191 (EXIT NIL)) (EXIT (NREVERSE |y|)))))) (DEFUN |ILIST;coerce;$Of;21| (|x| |$|) (PROG (|s| |y| |z|) (RETURN (SEQ (LETT |y| NIL |ILIST;coerce;$Of;21|) (LETT |s| (SPADCALL |x| (QREFELT |$| 35)) |ILIST;coerce;$Of;21|) (SEQ G190 (COND ((NULL (NEQ |x| |s|)) (GO G191))) (SEQ (LETT |y| (CONS (SPADCALL (SPADCALL |x| (QREFELT |$| 13)) (QREFELT |$| 37)) |y|) |ILIST;coerce;$Of;21|) (EXIT (LETT |x| (SPADCALL |x| (QREFELT |$| 18)) |ILIST;coerce;$Of;21|))) NIL (GO G190) G191 (EXIT NIL)) (LETT |y| (NREVERSE |y|) |ILIST;coerce;$Of;21|) (EXIT (COND ((SPADCALL |s| (QREFELT |$| 17)) (SPADCALL |y| (QREFELT |$| 39))) ((QUOTE T) (SEQ (LETT |z| (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT |$| 13)) (QREFELT |$| 37)) (QREFELT |$| 41)) |ILIST;coerce;$Of;21|) (SEQ G190 (COND ((NULL (NEQ |s| (SPADCALL |x| (QREFELT |$| 18)))) (GO G191))) (SEQ (LETT |x| (SPADCALL |x| (QREFELT |$| 18)) |ILIST;coerce;$Of;21|) (EXIT (LETT |z| (CONS (SPADCALL (SPADCALL |x| (QREFELT |$| 13)) (QREFELT |$| 37)) |z|) |ILIST;coerce;$Of;21|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (SPADCALL (SPADCALL |y| (SPADCALL (SPADCALL (NREVERSE |z|) (QREFELT |$| 42)) (QREFELT |$| 43)) (QREFELT |$| 44)) (QREFELT |$| 39))))))))))) (DEFUN |ILIST;=;2$B;22| (|x| |y| |$|) (PROG (#1=#:G102042) (RETURN (SEQ (EXIT (COND ((EQ |x| |y|) (QUOTE T)) ((QUOTE T) (SEQ (SEQ G190 (COND ((NULL (COND ((OR (NULL |x|) (NULL |y|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (EXIT (COND ((NULL (SPADCALL (QCAR |x|) (QCAR |y|) (QREFELT |$| 46))) (PROGN (LETT #1# (QUOTE NIL) |ILIST;=;2$B;22|) (GO #1#))) ((QUOTE T) (SEQ (LETT |x| (QCDR |x|) |ILIST;=;2$B;22|) (EXIT (LETT |y| (QCDR |y|) |ILIST;=;2$B;22|))))))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (COND ((NULL |x|) (NULL |y|)) ((QUOTE T) (QUOTE NIL)))))))) #1# (EXIT #1#))))) (DEFUN |ILIST;latex;$S;23| (|x| |$|) (PROG (|s|) (RETURN (SEQ (LETT |s| "\\left[" |ILIST;latex;$S;23|) (SEQ G190 (COND ((NULL (COND ((NULL |x|) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (LETT |s| (STRCONC |s| (SPADCALL (QCAR |x|) (QREFELT |$| 49))) |ILIST;latex;$S;23|) (LETT |x| (QCDR |x|) |ILIST;latex;$S;23|) (EXIT (COND ((NULL (NULL |x|)) (LETT |s| (STRCONC |s| ", ") |ILIST;latex;$S;23|))))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (STRCONC |s| " \\right]")))))) (DEFUN |ILIST;member?;S$B;24| (|s| |x| |$|) (PROG (#1=#:G102052) (RETURN (SEQ (EXIT (SEQ (SEQ G190 (COND ((NULL (COND ((NULL |x|) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (EXIT (COND ((SPADCALL |s| (QCAR |x|) (QREFELT |$| 46)) (PROGN (LETT #1# (QUOTE T) |ILIST;member?;S$B;24|) (GO #1#))) ((QUOTE T) (LETT |x| (QCDR |x|) |ILIST;member?;S$B;24|))))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (QUOTE NIL)))) #1# (EXIT #1#))))) (DEFUN |ILIST;concat!;3$;25| (|x| |y| |$|) (PROG (|z|) (RETURN (SEQ (COND ((NULL |x|) (COND ((NULL |y|) |x|) ((QUOTE T) (SEQ (PUSH (SPADCALL |y| (QREFELT |$| 13)) |x|) (QRPLACD |x| (SPADCALL |y| (QREFELT |$| 18))) (EXIT |x|))))) ((QUOTE T) (SEQ (LETT |z| |x| |ILIST;concat!;3$;25|) (SEQ G190 (COND ((NULL (COND ((NULL (QCDR |z|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (EXIT (LETT |z| (QCDR |z|) |ILIST;concat!;3$;25|))) NIL (GO G190) G191 (EXIT NIL)) (QRPLACD |z| |y|) (EXIT |x|)))))))) (DEFUN |ILIST;removeDuplicates!;2$;26| (|l| |$|) (PROG (|f| |p| |pr| |pp|) (RETURN (SEQ (LETT |p| |l| |ILIST;removeDuplicates!;2$;26|) (SEQ G190 (COND ((NULL (COND ((NULL |p|) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (LETT |pp| |p| |ILIST;removeDuplicates!;2$;26|) (LETT |f| (QCAR |p|) |ILIST;removeDuplicates!;2$;26|) (LETT |p| (QCDR |p|) |ILIST;removeDuplicates!;2$;26|) (EXIT (SEQ G190 (COND ((NULL (COND ((NULL (LETT |pr| (QCDR |pp|) |ILIST;removeDuplicates!;2$;26|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (EXIT (COND ((SPADCALL (QCAR |pr|) |f| (QREFELT |$| 46)) (QRPLACD |pp| (QCDR |pr|))) ((QUOTE T) (LETT |pp| |pr| |ILIST;removeDuplicates!;2$;26|))))) NIL (GO G190) G191 (EXIT NIL)))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |l|))))) (DEFUN |ILIST;sort!;M2$;27| (|f| |l| |$|) (|ILIST;mergeSort| |f| |l| (SPADCALL |l| (QREFELT |$| 9)) |$|)) (DEFUN |ILIST;merge!;M3$;28| (|f| |p| |q| |$|) (PROG (|r| |t|) (RETURN (SEQ (COND ((NULL |p|) |q|) ((NULL |q|) |p|) ((EQ |p| |q|) (|error| "cannot merge a list into itself")) ((QUOTE T) (SEQ (COND ((SPADCALL (QCAR |p|) (QCAR |q|) |f|) (SEQ (LETT |r| (LETT |t| |p| |ILIST;merge!;M3$;28|) |ILIST;merge!;M3$;28|) (EXIT (LETT |p| (QCDR |p|) |ILIST;merge!;M3$;28|)))) ((QUOTE T) (SEQ (LETT |r| (LETT |t| |q| |ILIST;merge!;M3$;28|) |ILIST;merge!;M3$;28|) (EXIT (LETT |q| (QCDR |q|) |ILIST;merge!;M3$;28|))))) (SEQ G190 (COND ((NULL (COND ((OR (NULL |p|) (NULL |q|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (EXIT (COND ((SPADCALL (QCAR |p|) (QCAR |q|) |f|) (SEQ (QRPLACD |t| |p|) (LETT |t| |p| |ILIST;merge!;M3$;28|) (EXIT (LETT |p| (QCDR |p|) |ILIST;merge!;M3$;28|)))) ((QUOTE T) (SEQ (QRPLACD |t| |q|) (LETT |t| |q| |ILIST;merge!;M3$;28|) (EXIT (LETT |q| (QCDR |q|) |ILIST;merge!;M3$;28|))))))) NIL (GO G190) G191 (EXIT NIL)) (QRPLACD |t| (COND ((NULL |p|) |q|) ((QUOTE T) |p|))) (EXIT |r|)))))))) (DEFUN |ILIST;split!;$I$;29| (|p| |n| |$|) (PROG (#1=#:G102085 |q|) (RETURN (SEQ (COND ((|<| |n| 1) (|error| "index out of range")) ((QUOTE T) (SEQ (LETT |p| (SPADCALL |p| (PROG1 (LETT #1# (|-| |n| 1) |ILIST;split!;$I$;29|) (|check-subtype| (|>=| #1# 0) (QUOTE (|NonNegativeInteger|)) #1#)) (QREFELT |$| 32)) |ILIST;split!;$I$;29|) (LETT |q| (QCDR |p|) |ILIST;split!;$I$;29|) (QRPLACD |p| NIL) (EXIT |q|)))))))) (DEFUN |ILIST;mergeSort| (|f| |p| |n| |$|) (PROG (#1=#:G102089 |l| |q|) (RETURN (SEQ (COND ((EQL |n| 2) (COND ((SPADCALL (SPADCALL (SPADCALL |p| (QREFELT |$| 18)) (QREFELT |$| 13)) (SPADCALL |p| (QREFELT |$| 13)) |f|) (LETT |p| (SPADCALL |p| (QREFELT |$| 28)) |ILIST;mergeSort|))))) (EXIT (COND ((|<| |n| 3) |p|) ((QUOTE T) (SEQ (LETT |l| (PROG1 (LETT #1# (QUOTIENT2 |n| 2) |ILIST;mergeSort|) (|check-subtype| (|>=| #1# 0) (QUOTE (|NonNegativeInteger|)) #1#)) |ILIST;mergeSort|) (LETT |q| (SPADCALL |p| |l| (QREFELT |$| 57)) |ILIST;mergeSort|) (LETT |p| (|ILIST;mergeSort| |f| |p| |l| |$|) |ILIST;mergeSort|) (LETT |q| (|ILIST;mergeSort| |f| |q| (|-| |n| |l|) |$|) |ILIST;mergeSort|) (EXIT (SPADCALL |f| |p| |q| (QREFELT |$| 56))))))))))) (DEFUN |IndexedList| (|&REST| #1=#:G102103 |&AUX| #2=#:G102101) (DSETQ #2# #1#) (PROG NIL (RETURN (PROG (#3=#:G102102) (RETURN (COND ((LETT #3# (|lassocShiftWithFunction| (|devaluateList| #2#) (HGET |$ConstructorCache| (QUOTE |IndexedList|)) (QUOTE |domainEqualList|)) |IndexedList|) (|CDRwithIncrement| #3#)) ((QUOTE T) (|UNWIND-PROTECT| (PROG1 (APPLY (|function| |IndexedList;|) #2#) (LETT #3# T |IndexedList|)) (COND ((NOT #3#) (HREM |$ConstructorCache| (QUOTE |IndexedList|)))))))))))) (DEFUN |IndexedList;| (|#1| |#2|) (PROG (|DV$1| |DV$2| |dv$| |$| #1=#:G102100 |pv$|) (RETURN (PROGN (LETT |DV$1| (|devaluate| |#1|) . #2=(|IndexedList|)) (LETT |DV$2| (|devaluate| |#2|) . #2#) (LETT |dv$| (LIST (QUOTE |IndexedList|) |DV$1| |DV$2|) . #2#) (LETT |$| (GETREFV 71) . #2#) (QSETREFV |$| 0 |dv$|) (QSETREFV |$| 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (LETT #1# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) . #2#) (OR #1# (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) #1#) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))))) . #2#)) (|haddProp| |$ConstructorCache| (QUOTE |IndexedList|) (LIST |DV$1| |DV$2|) (CONS 1 |$|)) (|stuffDomainSlots| |$|) (QSETREFV |$| 6 |#1|) (QSETREFV |$| 7 |#2|) (COND ((|testBitVector| |pv$| 1) (PROGN (QSETREFV |$| 45 (CONS (|dispatchFunction| |ILIST;coerce;$Of;21|) |$|)) (QSETREFV |$| 47 (CONS (|dispatchFunction| |ILIST;=;2$B;22|) |$|)) (QSETREFV |$| 50 (CONS (|dispatchFunction| |ILIST;latex;$S;23|) |$|)) (QSETREFV |$| 51 (CONS (|dispatchFunction| |ILIST;member?;S$B;24|) |$|))))) (COND ((|testBitVector| |pv$| 1) (QSETREFV |$| 53 (CONS (|dispatchFunction| |ILIST;removeDuplicates!;2$;26|) |$|)))) |$|)))) (MAKEPROP (QUOTE |IndexedList|) (QUOTE |infovec|) (LIST (QUOTE #(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (|NonNegativeInteger|) |ILIST;#;$Nni;1| |ILIST;concat;S2$;2| (|Boolean|) |ILIST;eq?;2$B;3| |ILIST;first;$S;4| (QUOTE "first") |ILIST;elt;$firstS;5| |ILIST;empty;$;6| |ILIST;empty?;$B;7| |ILIST;rest;2$;8| (QUOTE "rest") |ILIST;elt;$rest$;9| |ILIST;setfirst!;$2S;10| |ILIST;setelt;$first2S;11| |ILIST;setrest!;3$;12| |ILIST;setelt;$rest2$;13| (|List| 6) |ILIST;construct;L$;14| |ILIST;parts;$L;15| |ILIST;reverse!;2$;16| |ILIST;reverse;2$;17| (|Integer|) |ILIST;minIndex;$I;18| |ILIST;rest;$Nni$;19| (0 . |cyclic?|) |ILIST;copy;2$;20| (5 . |cycleEntry|) (|OutputForm|) (10 . |coerce|) (|List| |$|) (15 . |bracket|) (|List| 36) (20 . |list|) (25 . |commaSeparate|) (30 . |overbar|) (35 . |concat!|) (41 . |coerce|) (46 . |=|) (52 . |=|) (|String|) (58 . |latex|) (63 . |latex|) (68 . |member?|) |ILIST;concat!;3$;25| (74 . |removeDuplicates!|) (|Mapping| 11 6 6) |ILIST;sort!;M2$;27| |ILIST;merge!;M3$;28| |ILIST;split!;$I$;29| (|Mapping| 6 6 6) (|Equation| 6) (|List| 59) (|Mapping| 11 6) (|Void|) (|UniversalSegment| 30) (QUOTE "last") (QUOTE "value") (|Mapping| 6 6) (|InputForm|) (|SingleInteger|) (|List| 30) (|Union| 6 (QUOTE "failed")))) (QUOTE #(|~=| 79 |value| 85 |third| 90 |tail| 95 |swap!| 100 |split!| 107 |sorted?| 113 |sort!| 124 |sort| 135 |size?| 146 |setvalue!| 152 |setrest!| 158 |setlast!| 164 |setfirst!| 170 |setelt| 176 |setchildren!| 218 |select!| 224 |select| 230 |second| 236 |sample| 241 |reverse!| 245 |reverse| 250 |rest| 255 |removeDuplicates!| 266 |removeDuplicates| 271 |remove!| 276 |remove| 288 |reduce| 300 |qsetelt!| 321 |qelt| 328 |possiblyInfinite?| 334 |position| 339 |parts| 358 |nodes| 363 |node?| 368 |new| 374 |more?| 380 |minIndex| 386 |min| 391 |merge!| 397 |merge| 410 |members| 423 |member?| 428 |maxIndex| 434 |max| 439 |map!| 445 |map| 451 |list| 464 |less?| 469 |leaves| 475 |leaf?| 480 |latex| 485 |last| 490 |insert!| 501 |insert| 515 |indices| 529 |index?| 534 |hash| 540 |first| 545 |find| 556 |fill!| 562 |explicitlyFinite?| 568 |every?| 573 |eval| 579 |eq?| 605 |entry?| 611 |entries| 617 |empty?| 622 |empty| 627 |elt| 631 |distance| 674 |delete!| 680 |delete| 692 |cyclic?| 704 |cycleTail| 709 |cycleSplit!| 714 |cycleLength| 719 |cycleEntry| 724 |count| 729 |copyInto!| 741 |copy| 748 |convert| 753 |construct| 758 |concat!| 763 |concat| 775 |coerce| 798 |children| 803 |child?| 808 |any?| 814 |>=| 820 |>| 826 |=| 832 |<=| 838 |<| 844 |#| 850)) (QUOTE ((|shallowlyMutable| . 0) (|finiteAggregate| . 0))) (CONS (|makeByteWordVec2| 7 (QUOTE (0 0 0 0 0 0 0 0 0 0 3 0 0 7 4 0 0 7 1 2 4))) (CONS (QUOTE #(|ListAggregate&| |StreamAggregate&| |ExtensibleLinearAggregate&| |FiniteLinearAggregate&| |UnaryRecursiveAggregate&| |LinearAggregate&| |RecursiveAggregate&| |IndexedAggregate&| |Collection&| |HomogeneousAggregate&| |OrderedSet&| |Aggregate&| |EltableAggregate&| |Evalable&| |SetCategory&| NIL NIL |InnerEvalable&| NIL NIL |BasicType&|)) (CONS (QUOTE #((|ListAggregate| 6) (|StreamAggregate| 6) (|ExtensibleLinearAggregate| 6) (|FiniteLinearAggregate| 6) (|UnaryRecursiveAggregate| 6) (|LinearAggregate| 6) (|RecursiveAggregate| 6) (|IndexedAggregate| 30 6) (|Collection| 6) (|HomogeneousAggregate| 6) (|OrderedSet|) (|Aggregate|) (|EltableAggregate| 30 6) (|Evalable| 6) (|SetCategory|) (|Type|) (|Eltable| 30 6) (|InnerEvalable| 6 6) (|CoercibleTo| 36) (|ConvertibleTo| 67) (|BasicType|))) (|makeByteWordVec2| 70 (QUOTE (1 0 11 0 33 1 0 0 0 35 1 6 36 0 37 1 36 0 38 39 1 40 0 36 41 1 36 0 38 42 1 36 0 0 43 2 40 0 0 36 44 1 0 36 0 45 2 6 11 0 0 46 2 0 11 0 0 47 1 6 48 0 49 1 0 48 0 50 2 0 11 6 0 51 1 0 0 0 53 2 1 11 0 0 1 1 0 6 0 1 1 0 6 0 1 1 0 0 0 1 3 0 62 0 30 30 1 2 0 0 0 30 57 1 3 11 0 1 2 0 11 54 0 1 1 3 0 0 1 2 0 0 54 0 55 1 3 0 0 1 2 0 0 54 0 1 2 0 11 0 8 1 2 0 6 0 6 1 2 0 0 0 0 23 2 0 6 0 6 1 2 0 6 0 6 21 3 0 6 0 30 6 1 3 0 6 0 63 6 1 3 0 6 0 64 6 1 3 0 0 0 19 0 24 3 0 6 0 14 6 22 3 0 6 0 65 6 1 2 0 0 0 38 1 2 0 0 61 0 1 2 0 0 61 0 1 1 0 6 0 1 0 0 0 1 1 0 0 0 28 1 0 0 0 29 2 0 0 0 8 32 1 0 0 0 18 1 1 0 0 53 1 1 0 0 1 2 1 0 6 0 1 2 0 0 61 0 1 2 1 0 6 0 1 2 0 0 61 0 1 4 1 6 58 0 6 6 1 2 0 6 58 0 1 3 0 6 58 0 6 1 3 0 6 0 30 6 1 2 0 6 0 30 1 1 0 11 0 1 2 1 30 6 0 1 3 1 30 6 0 30 1 2 0 30 61 0 1 1 0 25 0 27 1 0 38 0 1 2 1 11 0 0 1 2 0 0 8 6 1 2 0 11 0 8 1 1 5 30 0 31 2 3 0 0 0 1 2 3 0 0 0 1 3 0 0 54 0 0 56 2 3 0 0 0 1 3 0 0 54 0 0 1 1 0 25 0 1 2 1 11 6 0 51 1 5 30 0 1 2 3 0 0 0 1 2 0 0 66 0 1 3 0 0 58 0 0 1 2 0 0 66 0 1 1 0 0 6 1 2 0 11 0 8 1 1 0 25 0 1 1 0 11 0 1 1 1 48 0 50 2 0 0 0 8 1 1 0 6 0 1 3 0 0 6 0 30 1 3 0 0 0 0 30 1 3 0 0 0 0 30 1 3 0 0 6 0 30 1 1 0 69 0 1 2 0 11 30 0 1 1 1 68 0 1 2 0 0 0 8 1 1 0 6 0 13 2 0 70 61 0 1 2 0 0 0 6 1 1 0 11 0 1 2 0 11 61 0 1 3 6 0 0 6 6 1 3 6 0 0 25 25 1 2 6 0 0 59 1 2 6 0 0 60 1 2 0 11 0 0 12 2 1 11 6 0 1 1 0 25 0 1 1 0 11 0 17 0 0 0 16 2 0 6 0 30 1 3 0 6 0 30 6 1 2 0 0 0 63 1 2 0 6 0 64 1 2 0 0 0 19 20 2 0 6 0 14 15 2 0 6 0 65 1 2 0 30 0 0 1 2 0 0 0 63 1 2 0 0 0 30 1 2 0 0 0 63 1 2 0 0 0 30 1 1 0 11 0 33 1 0 0 0 1 1 0 0 0 1 1 0 8 0 1 1 0 0 0 35 2 1 8 6 0 1 2 0 8 61 0 1 3 0 0 0 0 30 1 1 0 0 0 34 1 2 67 0 1 1 0 0 25 26 2 0 0 0 0 52 2 0 0 0 6 1 1 0 0 38 1 2 0 0 0 6 1 2 0 0 6 0 10 2 0 0 0 0 1 1 1 36 0 45 1 0 38 0 1 2 1 11 0 0 1 2 0 11 61 0 1 2 3 11 0 0 1 2 3 11 0 0 1 2 1 11 0 0 47 2 3 11 0 0 1 2 3 11 0 0 1 1 0 8 0 9)))))) (QUOTE |lookupComplete|))) @ \section{domain LIST List} <>= )abbrev domain LIST List ++ Author: Michael Monagan ++ Date Created: Sep 1987 ++ Change History: ++ Basic Operations: ++ \#, append, concat, concat!, cons, construct, copy, elt, elt, ++ empty, empty?, eq?, first, member?, merge!, mergeSort, minIndex, ++ nil, null, parts, removeDuplicates!, rest, rest, reverse, ++ reverse!, setDifference, setIntersection, setUnion, setelt, ++ setfirst!, setrest!, sort!, split! ++ Related Constructors: ListFunctions2, ListFunctions3, ListToMap ++ Also See: IndexList, ListAggregate ++ AMS Classification: ++ Keywords: list, index, aggregate, lisp ++ Description: ++ \spadtype{List} implements singly-linked lists that are ++ addressable by indices; the index of the first element ++ is 1. In addition to the operations provided by ++ \spadtype{IndexedList}, this constructor provides some ++ LISP-like functions such as \spadfun{null} and \spadfun{cons}. List(S:Type): Exports == Implementation where LISTMININDEX ==> 1 -- this is the minimum list index Exports ==> ListAggregate S with nil : () -> % ++ nil() returns the empty list. null : % -> Boolean ++ null(u) tests if list \spad{u} is the ++ empty list. cons : (S, %) -> % ++ cons(element,u) appends \spad{element} onto the front ++ of list \spad{u} and returns the new list. This new list ++ and the old one will share some structure. append : (%, %) -> % ++ append(u1,u2) appends the elements of list \spad{u1} ++ onto the front of list \spad{u2}. This new list ++ and \spad{u2} will share some structure. if S has SetCategory then setUnion : (%, %) -> % ++ setUnion(u1,u2) appends the two lists u1 and u2, then ++ removes all duplicates. The order of elements in the ++ resulting list is unspecified. setIntersection : (%, %) -> % ++ setIntersection(u1,u2) returns a list of the elements ++ that lists \spad{u1} and \spad{u2} have in common. ++ The order of elements in the resulting list is unspecified. setDifference : (%, %) -> % ++ setDifference(u1,u2) returns a list of the elements ++ of \spad{u1} that are not also in \spad{u2}. ++ The order of elements in the resulting list is unspecified. if S has OpenMath then OpenMath Implementation ==> IndexedList(S, LISTMININDEX) add nil() == NIL$Lisp null l == NULL(l)$Lisp cons(s, l) == CONS(s, l)$Lisp append(l:%, t:%) == APPEND(l, t)$Lisp if S has OpenMath then writeOMList(dev: OpenMathDevice, x: %): Void == OMputApp(dev) OMputSymbol(dev, "list1", "list") -- The following didn't compile because the compiler isn't -- convinced that `xval' is a S. Duhhh! MCD. --for xval in x repeat -- OMwrite(dev, xval, false) while not null x repeat OMwrite(dev,first x,false) x := rest x OMputEndApp(dev) OMwrite(x: %): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML) OMputObject(dev) writeOMList(dev, x) OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s OMwrite(x: %, wholeObj: Boolean): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML) if wholeObj then OMputObject(dev) writeOMList(dev, x) if wholeObj then OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s OMwrite(dev: OpenMathDevice, x: %): Void == OMputObject(dev) writeOMList(dev, x) OMputEndObject(dev) OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void == if wholeObj then OMputObject(dev) writeOMList(dev, x) if wholeObj then OMputEndObject(dev) if S has SetCategory then setUnion(l1:%,l2:%) == removeDuplicates concat(l1,l2) setIntersection(l1:%,l2:%) == u :% := empty() l1 := removeDuplicates l1 while not empty? l1 repeat if member?(first l1,l2) then u := cons(first l1,u) l1 := rest l1 u setDifference(l1:%,l2:%) == l1 := removeDuplicates l1 lu:% := empty() while not empty? l1 repeat l11:=l1.1 if not member?(l11,l2) then lu := concat(l11,lu) l1 := rest l1 lu if S has ConvertibleTo InputForm then convert(x:%):InputForm == convert concat(convert("construct"::Symbol)@InputForm, [convert a for a in (x pretend List S)]$List(InputForm)) @ \section{LIST.lsp BOOTSTRAP} {\bf LIST} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf LIST} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf LIST.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <>= (|/VERSIONCHECK| 2) (PUT (QUOTE |LIST;nil;$;1|) (QUOTE |SPADreplace|) (QUOTE (XLAM NIL NIL))) (DEFUN |LIST;nil;$;1| (|$|) NIL) (PUT (QUOTE |LIST;null;$B;2|) (QUOTE |SPADreplace|) (QUOTE NULL)) (DEFUN |LIST;null;$B;2| (|l| |$|) (NULL |l|)) (PUT (QUOTE |LIST;cons;S2$;3|) (QUOTE |SPADreplace|) (QUOTE CONS)) (DEFUN |LIST;cons;S2$;3| (|s| |l| |$|) (CONS |s| |l|)) (PUT (QUOTE |LIST;append;3$;4|) (QUOTE |SPADreplace|) (QUOTE APPEND)) (DEFUN |LIST;append;3$;4| (|l| |t| |$|) (APPEND |l| |t|)) (DEFUN |LIST;writeOMList| (|dev| |x| |$|) (SEQ (SPADCALL |dev| (QREFELT |$| 14)) (SPADCALL |dev| "list1" "list" (QREFELT |$| 16)) (SEQ G190 (COND ((NULL (COND ((NULL |x|) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (SPADCALL |dev| (|SPADfirst| |x|) (QUOTE NIL) (QREFELT |$| 17)) (EXIT (LETT |x| (CDR |x|) |LIST;writeOMList|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT (SPADCALL |dev| (QREFELT |$| 18))))) (DEFUN |LIST;OMwrite;$S;6| (|x| |$|) (PROG (|sp| |dev| |s|) (RETURN (SEQ (LETT |s| "" |LIST;OMwrite;$S;6|) (LETT |sp| (|OM-STRINGTOSTRINGPTR| |s|) |LIST;OMwrite;$S;6|) (LETT |dev| (SPADCALL |sp| (SPADCALL (QREFELT |$| 20)) (QREFELT |$| 21)) |LIST;OMwrite;$S;6|) (SPADCALL |dev| (QREFELT |$| 22)) (|LIST;writeOMList| |dev| |x| |$|) (SPADCALL |dev| (QREFELT |$| 23)) (SPADCALL |dev| (QREFELT |$| 24)) (LETT |s| (|OM-STRINGPTRTOSTRING| |sp|) |LIST;OMwrite;$S;6|) (EXIT |s|))))) (DEFUN |LIST;OMwrite;$BS;7| (|x| |wholeObj| |$|) (PROG (|sp| |dev| |s|) (RETURN (SEQ (LETT |s| "" |LIST;OMwrite;$BS;7|) (LETT |sp| (|OM-STRINGTOSTRINGPTR| |s|) |LIST;OMwrite;$BS;7|) (LETT |dev| (SPADCALL |sp| (SPADCALL (QREFELT |$| 20)) (QREFELT |$| 21)) |LIST;OMwrite;$BS;7|) (COND (|wholeObj| (SPADCALL |dev| (QREFELT |$| 22)))) (|LIST;writeOMList| |dev| |x| |$|) (COND (|wholeObj| (SPADCALL |dev| (QREFELT |$| 23)))) (SPADCALL |dev| (QREFELT |$| 24)) (LETT |s| (|OM-STRINGPTRTOSTRING| |sp|) |LIST;OMwrite;$BS;7|) (EXIT |s|))))) (DEFUN |LIST;OMwrite;Omd$V;8| (|dev| |x| |$|) (SEQ (SPADCALL |dev| (QREFELT |$| 22)) (|LIST;writeOMList| |dev| |x| |$|) (EXIT (SPADCALL |dev| (QREFELT |$| 23))))) (DEFUN |LIST;OMwrite;Omd$BV;9| (|dev| |x| |wholeObj| |$|) (SEQ (COND (|wholeObj| (SPADCALL |dev| (QREFELT |$| 22)))) (|LIST;writeOMList| |dev| |x| |$|) (EXIT (COND (|wholeObj| (SPADCALL |dev| (QREFELT |$| 23))))))) (DEFUN |LIST;setUnion;3$;10| (|l1| |l2| |$|) (SPADCALL (SPADCALL |l1| |l2| (QREFELT |$| 29)) (QREFELT |$| 30))) (DEFUN |LIST;setIntersection;3$;11| (|l1| |l2| |$|) (PROG (|u|) (RETURN (SEQ (LETT |u| NIL |LIST;setIntersection;3$;11|) (LETT |l1| (SPADCALL |l1| (QREFELT |$| 30)) |LIST;setIntersection;3$;11|) (SEQ G190 (COND ((NULL (COND ((NULL |l1|) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (COND ((SPADCALL (|SPADfirst| |l1|) |l2| (QREFELT |$| 32)) (LETT |u| (CONS (|SPADfirst| |l1|) |u|) |LIST;setIntersection;3$;11|))) (EXIT (LETT |l1| (CDR |l1|) |LIST;setIntersection;3$;11|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |u|))))) (DEFUN |LIST;setDifference;3$;12| (|l1| |l2| |$|) (PROG (|l11| |lu|) (RETURN (SEQ (LETT |l1| (SPADCALL |l1| (QREFELT |$| 30)) |LIST;setDifference;3$;12|) (LETT |lu| NIL |LIST;setDifference;3$;12|) (SEQ G190 (COND ((NULL (COND ((NULL |l1|) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (LETT |l11| (SPADCALL |l1| 1 (QREFELT |$| 35)) |LIST;setDifference;3$;12|) (COND ((NULL (SPADCALL |l11| |l2| (QREFELT |$| 32))) (LETT |lu| (CONS |l11| |lu|) |LIST;setDifference;3$;12|))) (EXIT (LETT |l1| (CDR |l1|) |LIST;setDifference;3$;12|))) NIL (GO G190) G191 (EXIT NIL)) (EXIT |lu|))))) (DEFUN |LIST;convert;$If;13| (|x| |$|) (PROG (#1=#:G102544 |a| #2=#:G102545) (RETURN (SEQ (SPADCALL (CONS (SPADCALL (SPADCALL "construct" (QREFELT |$| 38)) (QREFELT |$| 40)) (PROGN (LETT #1# NIL |LIST;convert;$If;13|) (SEQ (LETT |a| NIL |LIST;convert;$If;13|) (LETT #2# |x| |LIST;convert;$If;13|) G190 (COND ((OR (ATOM #2#) (PROGN (LETT |a| (CAR #2#) |LIST;convert;$If;13|) NIL)) (GO G191))) (SEQ (EXIT (LETT #1# (CONS (SPADCALL |a| (QREFELT |$| 41)) #1#) |LIST;convert;$If;13|))) (LETT #2# (CDR #2#) |LIST;convert;$If;13|) (GO G190) G191 (EXIT (NREVERSE0 #1#))))) (QREFELT |$| 43)))))) (DEFUN |List| (#1=#:G102555) (PROG NIL (RETURN (PROG (#2=#:G102556) (RETURN (COND ((LETT #2# (|lassocShiftWithFunction| (LIST (|devaluate| #1#)) (HGET |$ConstructorCache| (QUOTE |List|)) (QUOTE |domainEqualList|)) |List|) (|CDRwithIncrement| #2#)) ((QUOTE T) (|UNWIND-PROTECT| (PROG1 (|List;| #1#) (LETT #2# T |List|)) (COND ((NOT #2#) (HREM |$ConstructorCache| (QUOTE |List|)))))))))))) (DEFUN |List;| (|#1|) (PROG (|DV$1| |dv$| |$| #1=#:G102554 |pv$|) (RETURN (PROGN (LETT |DV$1| (|devaluate| |#1|) . #2=(|List|)) (LETT |dv$| (LIST (QUOTE |List|) |DV$1|) . #2#) (LETT |$| (GETREFV 62) . #2#) (QSETREFV |$| 0 |dv$|) (QSETREFV |$| 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (LETT #1# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) . #2#) (OR #1# (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| |#1| (QUOTE (|OpenMath|))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) #1#) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))))) . #2#)) (|haddProp| |$ConstructorCache| (QUOTE |List|) (LIST |DV$1|) (CONS 1 |$|)) (|stuffDomainSlots| |$|) (QSETREFV |$| 6 |#1|) (COND ((|testBitVector| |pv$| 5) (PROGN (QSETREFV |$| 25 (CONS (|dispatchFunction| |LIST;OMwrite;$S;6|) |$|)) (QSETREFV |$| 26 (CONS (|dispatchFunction| |LIST;OMwrite;$BS;7|) |$|)) (QSETREFV |$| 27 (CONS (|dispatchFunction| |LIST;OMwrite;Omd$V;8|) |$|)) (QSETREFV |$| 28 (CONS (|dispatchFunction| |LIST;OMwrite;Omd$BV;9|) |$|))))) (COND ((|testBitVector| |pv$| 1) (PROGN (QSETREFV |$| 31 (CONS (|dispatchFunction| |LIST;setUnion;3$;10|) |$|)) (QSETREFV |$| 33 (CONS (|dispatchFunction| |LIST;setIntersection;3$;11|) |$|)) (QSETREFV |$| 36 (CONS (|dispatchFunction| |LIST;setDifference;3$;12|) |$|))))) (COND ((|testBitVector| |pv$| 2) (QSETREFV |$| 44 (CONS (|dispatchFunction| |LIST;convert;$If;13|) |$|)))) |$|)))) (MAKEPROP (QUOTE |List|) (QUOTE |infovec|) (LIST (QUOTE #(NIL NIL NIL NIL NIL (|IndexedList| 6 (NRTEVAL 1)) (|local| |#1|) |LIST;nil;$;1| (|Boolean|) |LIST;null;$B;2| |LIST;cons;S2$;3| |LIST;append;3$;4| (|Void|) (|OpenMathDevice|) (0 . |OMputApp|) (|String|) (5 . |OMputSymbol|) (12 . |OMwrite|) (19 . |OMputEndApp|) (|OpenMathEncoding|) (24 . |OMencodingXML|) (28 . |OMopenString|) (34 . |OMputObject|) (39 . |OMputEndObject|) (44 . |OMclose|) (49 . |OMwrite|) (54 . |OMwrite|) (60 . |OMwrite|) (66 . |OMwrite|) (73 . |concat|) (79 . |removeDuplicates|) (84 . |setUnion|) (90 . |member?|) (96 . |setIntersection|) (|Integer|) (102 . |elt|) (108 . |setDifference|) (|Symbol|) (114 . |coerce|) (|InputForm|) (119 . |convert|) (124 . |convert|) (|List| |$|) (129 . |convert|) (134 . |convert|) (|Mapping| 6 6 6) (|NonNegativeInteger|) (|List| 6) (|List| 49) (|Equation| 6) (|Mapping| 8 6) (|Mapping| 8 6 6) (|UniversalSegment| 34) (QUOTE "last") (QUOTE "rest") (QUOTE "first") (QUOTE "value") (|Mapping| 6 6) (|SingleInteger|) (|OutputForm|) (|List| 34) (|Union| 6 (QUOTE "failed")))) (QUOTE #(|setUnion| 139 |setIntersection| 145 |setDifference| 151 |removeDuplicates| 157 |null| 162 |nil| 167 |member?| 171 |elt| 177 |convert| 183 |cons| 188 |concat| 194 |append| 200 |OMwrite| 206)) (QUOTE ((|shallowlyMutable| . 0) (|finiteAggregate| . 0))) (CONS (|makeByteWordVec2| 8 (QUOTE (0 0 0 0 0 0 0 0 0 0 3 0 0 8 4 0 0 8 1 2 4 5))) (CONS (QUOTE #(|ListAggregate&| |StreamAggregate&| |ExtensibleLinearAggregate&| |FiniteLinearAggregate&| |UnaryRecursiveAggregate&| |LinearAggregate&| |RecursiveAggregate&| |IndexedAggregate&| |Collection&| |HomogeneousAggregate&| |OrderedSet&| |Aggregate&| |EltableAggregate&| |Evalable&| |SetCategory&| NIL NIL |InnerEvalable&| NIL NIL |BasicType&| NIL)) (CONS (QUOTE #((|ListAggregate| 6) (|StreamAggregate| 6) (|ExtensibleLinearAggregate| 6) (|FiniteLinearAggregate| 6) (|UnaryRecursiveAggregate| 6) (|LinearAggregate| 6) (|RecursiveAggregate| 6) (|IndexedAggregate| 34 6) (|Collection| 6) (|HomogeneousAggregate| 6) (|OrderedSet|) (|Aggregate|) (|EltableAggregate| 34 6) (|Evalable| 6) (|SetCategory|) (|Type|) (|Eltable| 34 6) (|InnerEvalable| 6 6) (|CoercibleTo| 59) (|ConvertibleTo| 39) (|BasicType|) (|OpenMath|))) (|makeByteWordVec2| 44 (QUOTE (1 13 12 0 14 3 13 12 0 15 15 16 3 6 12 13 0 8 17 1 13 12 0 18 0 19 0 20 2 13 0 15 19 21 1 13 12 0 22 1 13 12 0 23 1 13 12 0 24 1 0 15 0 25 2 0 15 0 8 26 2 0 12 13 0 27 3 0 12 13 0 8 28 2 0 0 0 0 29 1 0 0 0 30 2 0 0 0 0 31 2 0 8 6 0 32 2 0 0 0 0 33 2 0 6 0 34 35 2 0 0 0 0 36 1 37 0 15 38 1 39 0 37 40 1 6 39 0 41 1 39 0 42 43 1 0 39 0 44 2 1 0 0 0 31 2 1 0 0 0 33 2 1 0 0 0 36 1 1 0 0 30 1 0 8 0 9 0 0 0 7 2 1 8 6 0 32 2 0 6 0 34 35 1 2 39 0 44 2 0 0 6 0 10 2 0 0 0 0 29 2 0 0 0 0 11 3 5 12 13 0 8 28 2 5 12 13 0 27 1 5 15 0 25 2 5 15 0 8 26)))))) (QUOTE |lookupIncomplete|))) @ \section{package LIST2 ListFunctions2} <>= )abbrev package LIST2 ListFunctions2 ++ Author: ++ Date Created: ++ Change History: ++ Basic Operations: map, reduce, scan ++ Related Constructors: List ++ Also See: ListFunctions3 ++ AMS Classification: ++ Keywords: list, aggregate, map, reduce ++ Description: ++ \spadtype{ListFunctions2} implements utility functions that ++ operate on two kinds of lists, each with a possibly different ++ type of element. ListFunctions2(A:Type, B:Type): public == private where LA ==> List A LB ==> List B O2 ==> FiniteLinearAggregateFunctions2(A, LA, B, LB) public ==> with scan: ((A, B) -> B, LA, B) -> LB ++ scan(fn,u,ident) successively uses the binary function ++ \spad{fn} to reduce more and more of list \spad{u}. ++ \spad{ident} is returned if the \spad{u} is empty. ++ The result is a list of the reductions at each step. See ++ \spadfun{reduce} for more information. Examples: ++ \spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and ++ \spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}. reduce: ((A, B) -> B, LA, B) -> B ++ reduce(fn,u,ident) successively uses the binary function ++ \spad{fn} on the elements of list \spad{u} and the result ++ of previous applications. \spad{ident} is returned if the ++ \spad{u} is empty. Note the order of application in ++ the following examples: ++ \spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and ++ \spad{reduce(*,[2,3],1) = 3 * (2 * 1)}. map: (A -> B, LA) -> LB ++ map(fn,u) applies \spad{fn} to each element of ++ list \spad{u} and returns a new list with the results. ++ For example \spad{map(square,[1,2,3]) = [1,4,9]}. private ==> add map(f, l) == map(f, l)$O2 scan(f, l, b) == scan(f, l, b)$O2 reduce(f, l, b) == reduce(f, l, b)$O2 @ \section{package LIST3 ListFunctions3} <>= )abbrev package LIST3 ListFunctions3 ++ Author: ++ Date Created: ++ Change History: ++ Basic Operations: map ++ Related Constructors: List ++ Also See: ListFunctions2 ++ AMS Classification: ++ Keywords: list, aggregate, map ++ Description: ++ \spadtype{ListFunctions3} implements utility functions that ++ operate on three kinds of lists, each with a possibly different ++ type of element. ListFunctions3(A:Type, B:Type, C:Type): public == private where LA ==> List A LB ==> List B LC ==> List C public ==> with map: ( (A,B)->C, LA, LB) -> LC ++ map(fn,list1, u2) applies the binary function \spad{fn} ++ to corresponding elements of lists \spad{u1} and \spad{u2} ++ and returns a list of the results (in the same order). Thus ++ \spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation ++ terminates when the end of either list is reached. That is, ++ the length of the result list is equal to the minimum of the ++ lengths of \spad{u1} and \spad{u2}. private ==> add map(fn : (A,B) -> C, la : LA, lb : LB): LC == empty?(la) or empty?(lb) => empty()$LC concat(fn(first la, first lb), map(fn, rest la, rest lb)) @ \section{package LIST2MAP ListToMap} <>= )abbrev package LIST2MAP ListToMap ++ Author: Manuel Bronstein ++ Date Created: 22 Mar 1988 ++ Change History: ++ 11 Oct 1989 MB ? ++ Basic Operations: match ++ Related Constructors: List ++ Also See: ++ AMS Classification: ++ Keywords: mapping, list ++ Description: ++ \spadtype{ListToMap} allows mappings to be described by a pair of ++ lists of equal lengths. The image of an element \spad{x}, ++ which appears in position \spad{n} in the first list, is then ++ the \spad{n}th element of the second list. A default value or ++ default function can be specified to be used when \spad{x} ++ does not appear in the first list. In the absence of defaults, ++ an error will occur in that case. ListToMap(A:SetCategory, B:Type): Exports == Implementation where LA ==> List A LB ==> List B AB ==> (A -> B) Exports ==> with match: (LA, LB ) -> AB ++ match(la, lb) creates a map with no default source or target values ++ defined by lists la and lb of equal length. ++ The target of a source value \spad{x} in la is the ++ value y with the same index lb. ++ Error: if la and lb are not of equal length. ++ Note: when this map is applied, an error occurs when ++ applied to a value missing from la. match: (LA, LB, A) -> B ++ match(la, lb, a) creates a map ++ defined by lists la and lb of equal length, where \spad{a} is used ++ as the default source value if the given one is not in \spad{la}. ++ The target of a source value \spad{x} in la is the ++ value y with the same index lb. ++ Error: if la and lb are not of equal length. match: (LA, LB, B) -> AB ++ match(la, lb, b) creates a map ++ defined by lists la and lb of equal length, where \spad{b} is used ++ as the default target value if the given function argument is ++ not in \spad{la}. ++ The target of a source value \spad{x} in la is the ++ value y with the same index lb. ++ Error: if la and lb are not of equal length. match: (LA, LB, A, B) -> B ++ match(la, lb, a, b) creates a map ++ defined by lists la and lb of equal length. ++ and applies this map to a. ++ The target of a source value \spad{x} in la is the ++ value y with the same index lb. ++ Argument b is the default target value if a is not in la. ++ Error: if la and lb are not of equal length. match: (LA, LB, AB) -> AB ++ match(la, lb, f) creates a map ++ defined by lists la and lb of equal length. ++ The target of a source value \spad{x} in la is the ++ value y with the same index lb. ++ Argument \spad{f} is used as the ++ function to call when the given function argument is not in ++ \spad{la}. ++ The value returned is f applied to that argument. match: (LA, LB, A, AB) -> B ++ match(la, lb, a, f) creates a map ++ defined by lists la and lb of equal length. ++ and applies this map to a. ++ The target of a source value \spad{x} in la is the ++ value y with the same index lb. ++ Argument \spad{f} is a default function to call if a is not in la. ++ The value returned is then obtained by applying f to argument a. Implementation ==> add match(la, lb) == match(la, lb, #1) match(la:LA, lb:LB, a:A) == lb.position(a, la) match(la:LA, lb:LB, b:B) == match(la, lb, #1, b) match(la:LA, lb:LB, f:AB) == match(la, lb, #1, f) match(la:LA, lb:LB, a:A, b:B) == (p := position(a, la)) < minIndex(la) => b lb.p match(la:LA, lb:LB, a:A, f:AB) == (p := position(a, la)) < minIndex(la) => f a lb.p @ \section{domain ALIST AssociationList} <>= )abbrev domain ALIST AssociationList ++ Author: ++ Date Created: ++ Change History: ++ Basic Operations: empty, empty?, keys, \#, concat, first, rest, ++ setrest!, search, setelt, remove! ++ Related Constructors: ++ Also See: List ++ AMS Classification: ++ Keywords: list, association list ++ Description: ++ \spadtype{AssociationList} implements association lists. These ++ may be viewed as lists of pairs where the first part is a key ++ and the second is the stored value. For example, the key might ++ be a string with a persons employee identification number and ++ the value might be a record with personnel data. AssociationList(Key:SetCategory, Entry:SetCategory): AssociationListAggregate(Key, Entry) == add Pair ==> Record(key:Key, entry:Entry) Rep := Reference List Pair dictionary() == ref empty() empty() == dictionary() empty? t == empty? deref t entries(t:%):List(Pair) == deref t parts(t:%):List(Pair) == deref t keys t == [k.key for k in deref t] # t == # deref t first(t:%):Pair == first deref t rest t == ref rest deref t concat(p:Pair, t:%) == ref concat(p, deref t) setrest_!(a:%, b:%) == ref setrest_!(deref a, deref b) setfirst_!(a:%, p:Pair) == setfirst_!(deref a,p) minIndex(a:%):Integer == minIndex(deref a) maxIndex(a:%):Integer == maxIndex(deref a) search(k, t) == for r in deref t repeat k = r.key => return(r.entry) "failed" latex(a : %) : String == l : List Pair := entries a s : String := "\left[" while not empty?(l) repeat r : Pair := first l l := rest l s := concat(s, concat(latex r.key, concat(" = ", latex r.entry)$String)$String)$String if not empty?(l) then s := concat(s, ", ")$String concat(s, " \right]")$String -- assoc(k, l) == -- (r := find(#1.key=k, l)) case "failed" => "failed" -- r assoc(k, t) == for r in deref t repeat k = r.key => return r "failed" setelt(t:%, k:Key, e:Entry) == (r := assoc(k, t)) case Pair => (r::Pair).entry := e setref(t, concat([k, e], deref t)) e remove_!(k:Key, t:%) == empty?(l := deref t) => "failed" k = first(l).key => setref(t, rest l) first(l).entry prev := l curr := rest l while not empty? curr and first(curr).key ^= k repeat prev := curr curr := rest curr empty? curr => "failed" setrest_!(prev, rest curr) first(curr).entry @ \section{License} <>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <> <> <> <> <> <> <> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}