\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra lingrob.spad} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package LGROBP LinGroebnerPackage} <<package LGROBP LinGroebnerPackage>>= )abbrev package LGROBP LinGroebnerPackage ++ Given a Groebner basis B with respect to the total degree ordering for ++ a zero-dimensional ideal I, compute ++ a Groebner basis with respect to the lexicographical ordering by using ++ linear algebra. LinGroebnerPackage(lv,F) : C == T where Z ==> Integer lv : List Symbol F : GcdDomain DP ==> DirectProduct(#lv,NonNegativeInteger) DPoly ==> DistributedMultivariatePolynomial(lv,F) HDP ==> HomogeneousDirectProduct(#lv,NonNegativeInteger) HDPoly ==> HomogeneousDistributedMultivariatePolynomial(lv,F) OV ==> OrderedVariableList(lv) NNI ==> NonNegativeInteger LVals ==> Record(gblist : List DPoly,gvlist : List Z) VF ==> Vector F VV ==> Vector NNI MF ==> Matrix F cLVars ==> Record(glbase:List DPoly,glval:List Z) C == with linGenPos : List HDPoly -> LVals ++ linGenPos \undocumented groebgen : List DPoly -> cLVars ++ groebgen \undocumented totolex : List HDPoly -> List DPoly ++ totolex \undocumented minPol : (List HDPoly,List HDPoly,OV) -> HDPoly ++ minPol \undocumented minPol : (List HDPoly,OV) -> HDPoly ++ minPol \undocumented computeBasis : List HDPoly -> List HDPoly ++ computeBasis \undocumented coord : (HDPoly,List HDPoly) -> VF ++ coord \undocumented anticoord : (List F,DPoly,List DPoly) -> DPoly ++ anticoord \undocumented intcompBasis : (OV,List HDPoly,List HDPoly) -> List HDPoly ++ intcompBasis \undocumented choosemon : (DPoly,List DPoly) -> DPoly ++ choosemon \undocumented transform : DPoly -> HDPoly ++ transform \undocumented T == add import GroebnerPackage(F,DP,OV,DPoly) import GroebnerPackage(F,HDP,OV,HDPoly) import GroebnerInternalPackage(F,HDP,OV,HDPoly) import GroebnerInternalPackage(F,DP,OV,DPoly) lvar :=[variable(yx)::OV for yx in lv] reduceRow(M:MF, v : VF, lastRow: Integer, pivots: Vector(Integer)) : VF == a1:F := 1 b:F := 0 dim := #v for j in 1..lastRow repeat -- scan over rows mj := row(M,j) k:=pivots(j) b:=mj.k vk := v.k for kk in 1..(k-1) repeat v(kk) := ((-b*v(kk)) exquo a1) :: F for kk in k..dim repeat v(kk) := ((vk*mj(kk)-b*v(kk)) exquo a1)::F a1 := b v rRedPol(f:HDPoly, B:List HDPoly):Record(poly:HDPoly, mult:F) == gm := redPo(f,B) gm.poly = 0 => gm gg := reductum(gm.poly) ggm := rRedPol(gg,B) [ggm.mult*(gm.poly - gg) + ggm.poly, ggm.mult*gm.mult] ----- transform the total basis B in lex basis ----- totolex(B : List HDPoly) : List DPoly == result:List DPoly :=[] ltresult:List DPoly :=[] vBasis:= computeBasis B nBasis:List DPoly :=[1$DPoly] ndim:=(#vBasis)::PositiveInteger ndim1:NNI:=ndim+1 lm:VF linmat:MF:=zero(ndim,2*ndim+1) linmat(1,1):=1$F linmat(1,ndim1):=1 pivots:Vector Integer := new(ndim,0) pivots(1) := 1 firstmon:DPoly:=1$DPoly ofirstmon:DPoly:=1$DPoly orecfmon:Record(poly:HDPoly, mult:F) := [1,1] i:NNI:=2 while (firstmon:=choosemon(firstmon,ltresult))~=1 repeat if (v:=firstmon exquo ofirstmon) case "failed" then recfmon:=rRedPol(transform firstmon,B) else recfmon:=rRedPol(transform(v::DPoly) *orecfmon.poly,B) recfmon.mult := recfmon.mult * orecfmon.mult cc := gcd(content recfmon.poly, recfmon.mult) recfmon.poly := (recfmon.poly exquo cc)::HDPoly recfmon.mult := (recfmon.mult exquo cc)::F veccoef:VF:=coord(recfmon.poly,vBasis) ofirstmon:=firstmon orecfmon := recfmon lm:=zero(2*ndim+1) j : Integer for j in 1..ndim repeat lm(j):=veccoef(j) lm(ndim+i):=recfmon.mult lm := reduceRow(linmat, lm, i-1, pivots) if i=ndim1 then j:=ndim1 else j:=1 while lm(j) = 0 and j< ndim1 repeat j:=j+1 if j=ndim1 then cordlist:List F:=[lm(k) for k in ndim1..ndim1+(#nBasis)] antc:=+/[c*b for c in reverse cordlist for b in concat(firstmon,nBasis)] antc:=primitivePart antc result:=concat(antc,result) ltresult:=concat(antc-reductum antc,ltresult) else pivots(i) := j setRow!(linmat,i,lm) i:=i+1 nBasis:=cons(firstmon,nBasis) result ---- Compute the univariate polynomial for x ----oldBasis is a total degree Groebner basis minPol(oldBasis:List HDPoly,x:OV) :HDPoly == algBasis:= computeBasis oldBasis minPol(oldBasis,algBasis,x) ---- Compute the univariate polynomial for x ---- oldBasis is total Groebner, algBasis is the basis as algebra minPol(oldBasis:List HDPoly,algBasis:List HDPoly,x:OV) :HDPoly == nvp:HDPoly:=x::HDPoly f:=1$HDPoly omult:F :=1 ndim:=(#algBasis)::PositiveInteger ndim1:NNI:=ndim+1 lm:VF linmat:MF:=zero(ndim,2*ndim+1) linmat(1,1):=1$F linmat(1,ndim1):=1 pivots:Vector Integer := new(ndim,0) pivots(1) := 1 for i in 2..ndim1 repeat recf:=rRedPol(f*nvp,oldBasis) omult := recf.mult * omult f := recf.poly cc := gcd(content f, omult) f := (f exquo cc)::HDPoly omult := (omult exquo cc)::F veccoef:VF:=coord(f,algBasis) lm:=zero(2*ndim+1) j : Integer for j in 1..ndim repeat lm(j) := veccoef(j) lm(ndim+i):=omult lm := reduceRow(linmat, lm, i-1, pivots) j:=1 while lm(j)=0 and j<ndim1 repeat j:=j+1 if j=ndim1 then return g:HDPoly:=0 for k in ndim1..2*ndim+1 repeat g:=g+lm(k) * nvp**((k-ndim1):NNI) primitivePart g pivots(i) := j setRow!(linmat,i,lm) ----- transform a DPoly in a HDPoly ----- transform(dpol:DPoly) : HDPoly == dpol=0 => 0$HDPoly monomial(leadingCoefficient dpol, directProduct(degree(dpol)::VV)$HDP)$HDPoly + transform(reductum dpol) ----- compute the basis for the vector space determined by B ----- computeBasis(B:List HDPoly) : List HDPoly == mB:List HDPoly:=[monomial(1$F,degree f)$HDPoly for f in B] result:List HDPoly := [1$HDPoly] for var in lvar repeat part:=intcompBasis(var,result,mB) result:=concat(result,part) result ----- internal function for computeBasis ----- intcompBasis(x:OV,lr:List HDPoly,mB : List HDPoly):List HDPoly == lr=[] => lr part:List HDPoly :=[] for f in lr repeat g:=x::HDPoly * f if redPo(g,mB).poly~=0 then part:=concat(g,part) concat(part,intcompBasis(x,part,mB)) ----- coordinate of f with respect to the basis B ----- ----- f is a reduced polynomial ----- coord(f:HDPoly,B:List HDPoly) : VF == ndim := #B vv:VF:=new(ndim,0$F)$VF while f~=0 repeat rf := reductum f lf := f-rf lcf := leadingCoefficient f i:Z:=position(monomial(1$F,degree lf),B) vv.i:=lcf f := rf vv ----- reconstruct the polynomial from its coordinate ----- anticoord(vv:List F,mf:DPoly,B:List DPoly) : DPoly == for f in B for c in vv repeat (mf:=mf-c*f) mf ----- choose the next monom ----- choosemon(mf:DPoly,nB:List DPoly) : DPoly == nB = [] => ((lvar.last)::DPoly)*mf for x in reverse lvar repeat xx:=x ::DPoly mf:=xx*mf if redPo(mf,nB).poly ~= 0 then return mf dx := degree(mf,x) mf := (mf exquo (xx ** dx))::DPoly mf ----- put B in general position, B is Groebner ----- linGenPos(B : List HDPoly) : LVals == result:List DPoly :=[] ltresult:List DPoly :=[] vBasis:= computeBasis B nBasis:List DPoly :=[1$DPoly] ndim:=#vBasis : PositiveInteger ndim1:NNI:=ndim+1 lm:VF linmat:MF:=zero(ndim,2*ndim+1) linmat(1,1):=1$F linmat(1,ndim1):=1 pivots:Vector Integer := new(ndim,0) pivots(1) := 1 i:NNI:=2 rval:List Z :=[] for ii in 1..(#lvar-1) repeat c:Z:=0 while c=0 repeat c:=random()$Z rem 11 rval:=concat(c,rval) nval:DPoly := (last.lvar)::DPoly - (+/[r*(vv)::DPoly for r in rval for vv in lvar]) firstmon:DPoly:=1$DPoly ofirstmon:DPoly:=1$DPoly orecfmon:Record(poly:HDPoly, mult:F) := [1,1] lx:= lvar.last while (firstmon:=choosemon(firstmon,ltresult))~=1 repeat if (v:=firstmon exquo ofirstmon) case "failed" then recfmon:=rRedPol(transform(eval(firstmon,lx,nval)),B) else recfmon:=rRedPol(transform(eval(v,lx,nval))*orecfmon.poly,B) recfmon.mult := recfmon.mult * orecfmon.mult cc := gcd(content recfmon.poly, recfmon.mult) recfmon.poly := (recfmon.poly exquo cc)::HDPoly recfmon.mult := (recfmon.mult exquo cc)::F veccoef:VF:=coord(recfmon.poly,vBasis) ofirstmon:=firstmon orecfmon := recfmon lm:=zero(2*ndim+1) j : Integer for j in 1..ndim repeat lm(j):=veccoef(j) lm(ndim+i):=recfmon.mult lm := reduceRow(linmat, lm, i-1, pivots) j:=1 while lm(j) = 0 and j<ndim1 repeat j:=j+1 if j=ndim1 then cordlist:List F:=[lm(j) for j in ndim1..ndim1+(#nBasis)] antc:=+/[c*b for c in reverse cordlist for b in concat(firstmon,nBasis)] result:=concat(primitivePart antc,result) ltresult:=concat(antc-reductum antc,ltresult) else pivots(i) := j setRow!(linmat,i,lm) i:=i+1 nBasis:=concat(firstmon,nBasis) [result,rval]$LVals ----- given a basis of a zero-dimensional ideal, ----- performs a random change of coordinates ----- computes a Groebner basis for the lex ordering groebgen(L:List DPoly) : cLVars == xn:=lvar.last val := xn::DPoly nvar1:NNI:=(#lvar-1):NNI ll: List Z :=[random()$Z rem 11 for i in 1..nvar1] val:=val+ +/[ll.i*(lvar.i)::DPoly for i in 1..nvar1] LL:=[elt(univariate(f,xn),val) for f in L] LL:= groebner(LL) [LL,ll]$cLVars @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package LGROBP LinGroebnerPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}