\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra lindep.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package LINDEP LinearDependence} <<package LINDEP LinearDependence>>= )abbrev package LINDEP LinearDependence ++ Test for linear dependence ++ Author: Manuel Bronstein ++ Date Created: ??? ++ Date Last Updated: 14 May 1991 ++ Description: Test for linear dependence. LinearDependence(S, R): Exports == Implementation where S: IntegralDomain R: Join(Ring,LinearlyExplicitRingOver S) Q ==> Fraction S Exports ==> with linearlyDependent?: Vector R -> Boolean ++ \spad{linearlyDependent?([v1,...,vn])} returns true if ++ the vi's are linearly dependent over S, false otherwise. linearDependence : Vector R -> Union(Vector S, "failed") ++ \spad{linearDependence([v1,...,vn])} returns \spad{[c1,...,cn]} if ++ \spad{c1*v1 + ... + cn*vn = 0} and not all the ci's are 0, ++ "failed" if the vi's are linearly independent over S. if S has Field then solveLinear: (Vector R, R) -> Union(Vector S, "failed") ++ \spad{solveLinear([v1,...,vn], u)} returns \spad{[c1,...,cn]} ++ such that \spad{c1*v1 + ... + cn*vn = u}, ++ "failed" if no such ci's exist in S. else solveLinear: (Vector R, R) -> Union(Vector Q, "failed") ++ \spad{solveLinear([v1,...,vn], u)} returns \spad{[c1,...,cn]} ++ such that \spad{c1*v1 + ... + cn*vn = u}, ++ "failed" if no such ci's exist in the quotient field of S. Implementation ==> add aNonZeroSolution: Matrix S -> Union(Vector S, "failed") aNonZeroSolution m == every?(zero?, v := first nullSpace m) => "failed" v linearlyDependent? v == zero?(n := #v) => true one? n => zero?(v(minIndex v)) positive? nullity reducedSystem transpose v linearDependence v == zero?(n := #v) => empty() one? n => zero?(v(minIndex v)) => new(1, 1) "failed" aNonZeroSolution reducedSystem transpose v if S has Field then solveLinear(v:Vector R, c:R):Union(Vector S, "failed") == zero? c => new(#v, 0) empty? v => "failed" sys := reducedSystem(transpose v, new(1, c)) particularSolution(sys.mat, sys.vec)$LinearSystemMatrixPackage(S, Vector S, Vector S, Matrix S) else solveLinear(v:Vector R, c:R):Union(Vector Q, "failed") == zero? c => new(#v, 0) empty? v => "failed" sys := reducedSystem(transpose v, new(1, c)) particularSolution(map(#1::Q, sys.mat)$MatrixCategoryFunctions2(S, Vector S,Vector S,Matrix S,Q,Vector Q,Vector Q,Matrix Q), map(#1::Q, sys.vec)$VectorFunctions2(S, Q) )$LinearSystemMatrixPackage(Q, Vector Q, Vector Q, Matrix Q) @ \section{package ZLINDEP IntegerLinearDependence} <<package ZLINDEP IntegerLinearDependence>>= )abbrev package ZLINDEP IntegerLinearDependence ++ Test for linear dependence over the integers ++ Author: Manuel Bronstein ++ Date Created: ??? ++ Date Last Updated: 14 May 1991 ++ Description: Test for linear dependence over the integers. IntegerLinearDependence(R): Exports == Implementation where R: Join(Ring,LinearlyExplicitRingOver Integer) Z ==> Integer Exports ==> with linearlyDependentOverZ?: Vector R -> Boolean ++ \spad{linearlyDependentOverZ?([v1,...,vn])} returns true if the ++ vi's are linearly dependent over the integers, false otherwise. linearDependenceOverZ : Vector R -> Union(Vector Z, "failed") ++ \spad{linearlyDependenceOverZ([v1,...,vn])} returns ++ \spad{[c1,...,cn]} if ++ \spad{c1*v1 + ... + cn*vn = 0} and not all the ci's are 0, "failed" ++ if the vi's are linearly independent over the integers. solveLinearlyOverQ : (Vector R, R) -> Union(Vector Fraction Z, "failed") ++ \spad{solveLinearlyOverQ([v1,...,vn], u)} returns \spad{[c1,...,cn]} ++ such that \spad{c1*v1 + ... + cn*vn = u}, ++ "failed" if no such rational numbers ci's exist. Implementation ==> add import LinearDependence(Z, R) linearlyDependentOverZ? v == linearlyDependent? v linearDependenceOverZ v == linearDependence v solveLinearlyOverQ(v, c) == solveLinear(v, c) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package LINDEP LinearDependence>> <<package ZLINDEP IntegerLinearDependence>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}