\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra limitps.spad} \author{Clifton J. Williamson, Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package LIMITPS PowerSeriesLimitPackage} <<package LIMITPS PowerSeriesLimitPackage>>= )abbrev package LIMITPS PowerSeriesLimitPackage ++ Author: Clifton J. Williamson ++ Date Created: 21 March 1989 ++ Date Last Updated: 30 March 1994 ++ Basic Operations: ++ Related Domains: UnivariateLaurentSeries(FE,x,a), ++ UnivariatePuiseuxSeries(FE,x,a),ExponentialExpansion(R,FE,x,a) ++ Also See: ++ AMS Classifications: ++ Keywords: limit, functional expression, power series ++ Examples: ++ References: ++ Description: ++ PowerSeriesLimitPackage implements limits of expressions ++ in one or more variables as one of the variables approaches a ++ limiting value. Included are two-sided limits, left- and right- ++ hand limits, and limits at plus or minus infinity. PowerSeriesLimitPackage(R,FE): Exports == Implementation where R : Join(GcdDomain,RetractableTo Integer,_ LinearlyExplicitRingOver Integer) FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_ FunctionSpace R) Z ==> Integer RN ==> Fraction Integer RF ==> Fraction Polynomial R OFE ==> OrderedCompletion FE OPF ==> OnePointCompletion FE SY ==> Symbol EQ ==> Equation LF ==> LiouvillianFunction UTS ==> UnivariateTaylorSeries ULS ==> UnivariateLaurentSeries UPXS ==> UnivariatePuiseuxSeries EFULS ==> ElementaryFunctionsUnivariateLaurentSeries EFUPXS ==> ElementaryFunctionsUnivariatePuiseuxSeries FS2UPS ==> FunctionSpaceToUnivariatePowerSeries FS2EXPXP ==> FunctionSpaceToExponentialExpansion Problem ==> Record(func:String,prob:String) RESULT ==> Union(OFE,"failed") TwoSide ==> Record(leftHandLimit:RESULT,rightHandLimit:RESULT) U ==> Union(OFE,TwoSide,"failed") SIGNEF ==> ElementaryFunctionSign(R,FE) Exports ==> with limit: (FE,EQ OFE) -> U ++ limit(f(x),x = a) computes the real limit \spad{lim(x -> a,f(x))}. complexLimit: (FE,EQ OPF) -> Union(OPF, "failed") ++ complexLimit(f(x),x = a) computes the complex limit ++ \spad{lim(x -> a,f(x))}. limit: (FE,EQ FE,String) -> RESULT ++ limit(f(x),x=a,"left") computes the left hand real limit ++ \spad{lim(x -> a-,f(x))}; ++ \spad{limit(f(x),x=a,"right")} computes the right hand real limit ++ \spad{lim(x -> a+,f(x))}. Implementation ==> add import ToolsForSign(R) import ElementaryFunctionStructurePackage(R,FE) zeroFE:FE := 0 anyRootsOrAtrigs? : FE -> Boolean complLimit : (FE,SY) -> Union(OPF,"failed") okProblem? : (String,String) -> Boolean realLimit : (FE,SY) -> U xxpLimit : (FE,SY) -> RESULT limitPlus : (FE,SY) -> RESULT localsubst : (FE,Kernel FE,Z,FE) -> FE locallimit : (FE,SY,OFE) -> U locallimitcomplex : (FE,SY,OPF) -> Union(OPF,"failed") poleLimit:(RN,FE,SY) -> U poleLimitPlus:(RN,FE,SY) -> RESULT noX?: (FE,SY) -> Boolean noX?(fcn,x) == not member?(x,variables fcn) constant?: FE -> Boolean constant? fcn == empty? variables fcn firstNonLogPtr: (FE,SY) -> List Kernel FE firstNonLogPtr(fcn,x) == -- returns a pointer to the first element of kernels(fcn) which -- has 'x' as a variable, which is not a logarithm, and which is -- not simply 'x' list := kernels fcn while not empty? list repeat ker := first list not is?(ker,"log" :: Symbol) and member?(x,variables(ker::FE)) _ and not(x = name operator (ker)) => return list list := rest list empty() finiteValueAtInfinity?: Kernel FE -> Boolean finiteValueAtInfinity? ker == is?(ker,"erf" :: Symbol) => true is?(ker,"sech" :: Symbol) => true is?(ker,"csch" :: Symbol) => true is?(ker,"tanh" :: Symbol) => true is?(ker,"coth" :: Symbol) => true is?(ker,"atan" :: Symbol) => true is?(ker,"acot" :: Symbol) => true is?(ker,"asec" :: Symbol) => true is?(ker,"acsc" :: Symbol) => true is?(ker,"acsch" :: Symbol) => true is?(ker,"acoth" :: Symbol) => true false knownValueAtInfinity?: Kernel FE -> Boolean knownValueAtInfinity? ker == is?(ker,"exp" :: Symbol) => true is?(ker,"sinh" :: Symbol) => true is?(ker,"cosh" :: Symbol) => true false leftOrRight: (FE,SY,FE) -> SingleInteger leftOrRight(fcn,x,limVal) == -- function is called when limitPlus(fcn,x) = limVal -- determines whether the limiting value is approached -- from the left or from the right (value := limitPlus(inv(fcn - limVal),x)) case "failed" => 0 (inf := whatInfinity(val := value :: OFE)) = 0 => error "limit package: internal error" inf specialLimit1: (FE,SY) -> RESULT specialLimitKernel: (Kernel FE,SY) -> RESULT specialLimitNormalize: (FE,SY) -> RESULT specialLimit: (FE, SY) -> RESULT specialLimit(fcn, x) == xkers := [k for k in kernels fcn | member?(x,variables(k::FE))] #xkers = 1 => specialLimit1(fcn,x) num := numerator fcn den := denominator fcn for k in xkers repeat (fval := limitPlus(k::FE,x)) case "failed" => return specialLimitNormalize(fcn,x) whatInfinity(val := fval::OFE) ~= 0 => return specialLimitNormalize(fcn,x) (valu := retractIfCan(val)@Union(FE,"failed")) case "failed" => return specialLimitNormalize(fcn,x) finVal := valu :: FE num := eval(num, k, finVal) den := eval(den, k, finVal) den = 0 => return specialLimitNormalize(fcn,x) (num/den) :: OFE :: RESULT specialLimitNormalize(fcn,x) == -- tries to normalize result first nfcn := normalize(fcn) fcn ~= nfcn => limitPlus(nfcn,x) xkers := [k for k in tower fcn | member?(x,variables(k::FE))] # xkers ~= 2 => "failed" expKers := [k for k in xkers | is?(k, "exp" :: Symbol)] # expKers ~= 1 => "failed" -- fcn is a rational function of x and exp(g(x)) for some rational function g expKer := first expKers (fval := limitPlus(expKer::FE,x)) case "failed" => "failed" vv := new()$SY; eq : EQ FE := equation(expKer :: FE,vv :: FE) cc := eval(fcn,eq) expKerLim := fval :: OFE -- following test for "failed" is needed due to compiler bug -- limVal case OFE generates EQCAR(limVal, 1) which fails on atom "failed" (limVal := locallimit(cc,vv,expKerLim)) case "failed" => "failed" limVal case OFE => limm := limVal :: OFE (lim := retractIfCan(limm)@Union(FE,"failed")) case "failed" => "failed" -- need special handling for directions at infinity limitPlus(lim, x) "failed" -- limit of expression having only 1 kernel involving x specialLimit1(fcn,x) == -- find the first interesting kernel in tower(fcn) xkers := [k for k in kernels fcn | member?(x,variables(k::FE))] #xkers ~= 1 => "failed" ker := first xkers vv := new()$SY; eq : EQ FE := equation(ker :: FE,vv :: FE) cc := eval(fcn,eq) member?(x,variables cc) => "failed" (lim := specialLimitKernel(ker, x)) case "failed" => lim argLim : OFE := lim :: OFE (limVal := locallimit(cc,vv,argLim)) case "failed" => "failed" limVal case OFE => limVal :: OFE "failed" -- limit of single kernel involving x specialLimitKernel(ker,x) == is?(ker,"log" :: Symbol) => args := argument ker empty? args => "failed" -- error "No argument" not empty? rest args => "failed" -- error "Too many arugments" arg := first args -- compute limit(x -> 0+,arg) (limm := limitPlus(arg,x)) case "failed" => "failed" lim := limm :: OFE (inf := whatInfinity lim) = -1 => "failed" argLim : OFE := -- log(+infinity) = +infinity inf = 1 => lim -- now 'lim' must be finite (li := retractIfCan(lim)@Union(FE,"failed") :: FE) = 0 => -- log(0) = -infinity leftOrRight(arg,x,0) = 1 => minusInfinity() return "failed" log(li) :: OFE -- kernel should be a function of one argument f(arg) args := argument(ker) empty? args => "failed" -- error "No argument" not empty? rest args => "failed" -- error "Too many arugments" arg := first args -- compute limit(x -> 0+,arg) (limm := limitPlus(arg,x)) case "failed" => "failed" lim := limm :: OFE f := elt(operator ker,(var := new()$SY) :: FE) -- compute limit(x -> 0+,f(arg)) -- case where 'lim' is finite (inf := whatInfinity lim) = 0 => is?(ker,"erf" :: Symbol) => erf(retract(lim)@FE)$LF(R,FE) :: OFE (kerValue := locallimit(f,var,lim)) case "failed" => "failed" kerValue case OFE => kerValue :: OFE "failed" -- case where 'lim' is plus infinity inf = 1 => finiteValueAtInfinity? ker => val : FE := is?(ker,"erf" :: Symbol) => 1 is?(ker,"sech" :: Symbol) => 0 is?(ker,"csch" :: Symbol) => 0 is?(ker,"tanh" :: Symbol) => 0 is?(ker,"coth" :: Symbol) => 0 is?(ker,"atan" :: Symbol) => pi()/(2 :: FE) is?(ker,"acot" :: Symbol) => 0 is?(ker,"asec" :: Symbol) => pi()/(2 :: FE) is?(ker,"acsc" :: Symbol) => 0 is?(ker,"acsch" :: Symbol) => 0 -- ker must be acoth 0 val :: OFE knownValueAtInfinity? ker => lim -- limit(exp, cosh, sinh ,x=inf) = inf "failed" -- case where 'lim' is minus infinity finiteValueAtInfinity? ker => val : FE := is?(ker,"erf" :: Symbol) => -1 is?(ker,"sech" :: Symbol) => 0 is?(ker,"csch" :: Symbol) => 0 is?(ker,"tanh" :: Symbol) => 0 is?(ker,"coth" :: Symbol) => 0 is?(ker,"atan" :: Symbol) => -pi()/(2 :: FE) is?(ker,"acot" :: Symbol) => pi() is?(ker,"asec" :: Symbol) => -pi()/(2 :: FE) is?(ker,"acsc" :: Symbol) => -pi() is?(ker,"acsch" :: Symbol) => 0 -- ker must be acoth 0 val :: OFE knownValueAtInfinity? ker => is?(ker,"exp" :: Symbol) => (0@FE) :: OFE is?(ker,"sinh" :: Symbol) => lim is?(ker,"cosh" :: Symbol) => plusInfinity() "failed" "failed" logOnlyLimit: (FE,SY) -> RESULT logOnlyLimit(coef,x) == -- this function is called when the 'constant' coefficient involves -- the variable 'x'. Its purpose is to compute a right hand limit -- of an expression involving log x. Here log x is replaced by -1/v, -- where v is a new variable. If the new expression no longer involves -- x, then take the right hand limit as v -> 0+ vv := new()$SY eq : EQ FE := equation(log(x :: FE),-inv(vv :: FE)) member?(x,variables(cc := eval(coef,eq))) => "failed" limitPlus(cc,vv) locallimit(fcn,x,a) == -- Here 'fcn' is a function f(x) = f(x,...) in 'x' and possibly -- other variables, and 'a' is a limiting value. The function -- computes lim(x -> a,f(x)). xK := retract(x::FE)@Kernel(FE) (n := whatInfinity a) = 0 => realLimit(localsubst(fcn,xK,1,retract(a)@FE),x) (u := limitPlus(eval(fcn,xK,n * inv(xK::FE)),x)) case "failed" => "failed" u::OFE localsubst(fcn, k, n, a) == a = 0 and n = 1 => fcn eval(fcn,k,n * (k::FE) + a) locallimitcomplex(fcn,x,a) == xK := retract(x::FE)@Kernel(FE) (g := retractIfCan(a)@Union(FE,"failed")) case FE => complLimit(localsubst(fcn,xK,1,g::FE),x) complLimit(eval(fcn,xK,inv(xK::FE)),x) limit(fcn,eq,str) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "limit:left hand side must be a variable" x := xx :: SY; a := rhs eq xK := retract(x::FE)@Kernel(FE) limitPlus(localsubst(fcn,xK,direction str,a),x) anyRootsOrAtrigs? fcn == -- determines if 'fcn' has any kernels which are roots -- or if 'fcn' has any kernels which are inverse trig functions -- which could produce series expansions with fractional exponents for kernel in tower fcn repeat is?(kernel,"nthRoot" :: Symbol) => return true is?(kernel,"asin" :: Symbol) => return true is?(kernel,"acos" :: Symbol) => return true is?(kernel,"asec" :: Symbol) => return true is?(kernel,"acsc" :: Symbol) => return true false complLimit(fcn,x) == -- computes lim(x -> 0,fcn) using a Puiseux expansion of fcn, -- if fcn is an expression involving roots, and using a Laurent -- expansion of fcn otherwise lim : FE := anyRootsOrAtrigs? fcn => ppack := FS2UPS(R,FE,RN,_ UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_ EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x) pseries := exprToUPS(fcn,false,"complex")$ppack pseries case %problem => return "failed" if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs) pole? upxs => return infinity() coefficient(upxs,0) lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_ EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x) lseries := exprToUPS(fcn,false,"complex")$lpack lseries case %problem => return "failed" if pole?(uls := lseries.%series) then uls := map(normalize,uls) pole? uls => return infinity() coefficient(uls,0) -- can the following happen? member?(x,variables lim) => member?(x,variables(answer := normalize lim)) => error "limit: can't evaluate limit" answer :: OPF lim :: FE :: OPF okProblem?(function,problem) == (function = "log") or (function = "nth root") => (problem = "series of non-zero order") or _ (problem = "negative leading coefficient") (function = "atan") => problem = "branch problem" (function = "erf") => problem = "unknown kernel" problem = "essential singularity" poleLimit(order,coef,x) == -- compute limit for function with pole not member?(x,variables coef) => (s := sign(coef)$SIGNEF) case Integer => rtLim := (s :: Integer) * plusInfinity() even? numer order => rtLim even? denom order => ["failed",rtLim]$TwoSide [-rtLim,rtLim]$TwoSide -- infinite limit, but cannot determine sign "failed" error "limit: can't evaluate limit" poleLimitPlus(order,coef,x) == -- compute right hand limit for function with pole not member?(x,variables coef) => (s := sign(coef)$SIGNEF) case Integer => (s :: Integer) * plusInfinity() -- infinite limit, but cannot determine sign "failed" (clim := specialLimit(coef,x)) case "failed" => "failed" zero? (lim := clim :: OFE) => -- in this event, we need to determine if the limit of -- the coef is 0+ or 0- (cclim := specialLimit(inv coef,x)) case "failed" => "failed" ss := whatInfinity(cclim :: OFE) :: Z zero? ss => error "limit: internal error" ss * plusInfinity() t := whatInfinity(lim :: OFE) :: Z zero? t => (tt := sign(coef)$SIGNEF) case Integer => (tt :: Integer) * plusInfinity() -- infinite limit, but cannot determine sign "failed" t * plusInfinity() realLimit(fcn,x) == -- computes lim(x -> 0,fcn) using a Puiseux expansion of fcn, -- if fcn is an expression involving roots, and using a Laurent -- expansion of fcn otherwise lim : Union(FE,"failed") := anyRootsOrAtrigs? fcn => ppack := FS2UPS(R,FE,RN,_ UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_ EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x) pseries := exprToUPS(fcn,true,"real: two sides")$ppack pseries case %problem => trouble := pseries.%problem function := trouble.func; problem := trouble.prob okProblem?(function,problem) => left := xK : Kernel FE := kernel x fcn0 := eval(fcn,xK,-(xK :: FE)) limitPlus(fcn0,x) right := limitPlus(fcn,x) (left case "failed") and (right case "failed") => return "failed" if (left case OFE) and (right case OFE) then (left :: OFE) = (right :: OFE) => return (left :: OFE) return([left,right]$TwoSide) return "failed" if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs) pole? upxs => cp := coefficient(upxs,ordp := order upxs) return poleLimit(ordp,cp,x) coefficient(upxs,0) lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_ EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x) lseries := exprToUPS(fcn,true,"real: two sides")$lpack lseries case %problem => trouble := lseries.%problem function := trouble.func; problem := trouble.prob okProblem?(function,problem) => left := xK : Kernel FE := kernel x fcn0 := eval(fcn,xK,-(xK :: FE)) limitPlus(fcn0,x) right := limitPlus(fcn,x) (left case "failed") and (right case "failed") => return "failed" if (left case OFE) and (right case OFE) then (left :: OFE) = (right :: OFE) => return (left :: OFE) return([left,right]$TwoSide) return "failed" if pole?(uls := lseries.%series) then uls := map(normalize,uls) pole? uls => cl := coefficient(uls,ordl := order uls) return poleLimit(ordl :: RN,cl,x) coefficient(uls,0) lim case "failed" => "failed" member?(x,variables(lim :: FE)) => member?(x,variables(answer := normalize(lim :: FE))) => error "limit: can't evaluate limit" answer :: OFE lim :: FE :: OFE xxpLimit(fcn,x) == -- computes lim(x -> 0+,fcn) using an exponential expansion of fcn xpack := FS2EXPXP(R,FE,x,zeroFE) xxp := exprToXXP(fcn,true)$xpack xxp case %problem => "failed" limitPlus(xxp.%expansion) limitPlus(fcn,x) == -- computes lim(x -> 0+,fcn) using a generalized Puiseux expansion -- of fcn, if fcn is an expression involving roots, and using a -- generalized Laurent expansion of fcn otherwise lim : Union(FE,"failed") := anyRootsOrAtrigs? fcn => ppack := FS2UPS(R,FE,RN,_ UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_ EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x) pseries := exprToGenUPS(fcn,true,"real: right side")$ppack pseries case %problem => trouble := pseries.%problem ff := trouble.func; pp := trouble.prob (pp = "negative leading coefficient") => return "failed" "failed" -- pseries case %problem => return "failed" if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs) pole? upxs => cp := coefficient(upxs,ordp := order upxs) return poleLimitPlus(ordp,cp,x) coefficient(upxs,0) lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_ EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x) lseries := exprToGenUPS(fcn,true,"real: right side")$lpack lseries case %problem => trouble := lseries.%problem ff := trouble.func; pp := trouble.prob (pp = "negative leading coefficient") => return "failed" "failed" -- lseries case %problem => return "failed" if pole?(uls := lseries.%series) then uls := map(normalize,uls) pole? uls => cl := coefficient(uls,ordl := order uls) return poleLimitPlus(ordl :: RN,cl,x) coefficient(uls,0) lim case "failed" => (xLim := xxpLimit(fcn,x)) case "failed" => specialLimit(fcn,x) xLim member?(x,variables(lim :: FE)) => member?(x,variables(answer := normalize(lim :: FE))) => (xLim := xxpLimit(answer,x)) case "failed" => specialLimit(answer,x) xLim answer :: OFE lim :: FE :: OFE limit(fcn:FE,eq:EQ OFE) == (f := retractIfCan(lhs eq)@Union(FE,"failed")) case "failed" => error "limit:left hand side must be a variable" (xx := retractIfCan(f)@Union(SY,"failed")) case "failed" => error "limit:left hand side must be a variable" x := xx :: SY; a := rhs eq locallimit(fcn,x,a) complexLimit(fcn:FE,eq:EQ OPF) == (f := retractIfCan(lhs eq)@Union(FE,"failed")) case "failed" => error "limit:left hand side must be a variable" (xx := retractIfCan(f)@Union(SY,"failed")) case "failed" => error "limit:left hand side must be a variable" x := xx :: SY; a := rhs eq locallimitcomplex(fcn,x,a) @ \section{package SIGNEF ElementaryFunctionSign} <<package SIGNEF ElementaryFunctionSign>>= )abbrev package SIGNEF ElementaryFunctionSign ++ Author: Manuel Bronstein ++ Date Created: 25 Aug 1989 ++ Date Last Updated: 4 May 1992 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: elementary function, sign ++ Examples: ++ References: ++ Description: ++ This package provides functions to determine the sign of an ++ elementary function around a point or infinity. ElementaryFunctionSign(R,F): Exports == Implementation where R : Join(IntegralDomain,RetractableTo Integer,_ LinearlyExplicitRingOver Integer,GcdDomain) F : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_ FunctionSpace R) N ==> NonNegativeInteger Z ==> Integer SY ==> Symbol RF ==> Fraction Polynomial R ORF ==> OrderedCompletion RF OFE ==> OrderedCompletion F K ==> Kernel F P ==> SparseMultivariatePolynomial(R, K) U ==> Union(Z, "failed") FS2 ==> FunctionSpaceFunctions2 Exports ==> with sign: F -> U ++ sign(f) returns the sign of f if it is constant everywhere. sign: (F, SY, OFE) -> U ++ sign(f, x, a) returns the sign of f as x nears \spad{a}, from both ++ sides if \spad{a} is finite. sign: (F, SY, F, String) -> U ++ sign(f, x, a, s) returns the sign of f as x nears \spad{a} from below ++ if s is "left", or above if s is "right". Implementation ==> add macro POSIT == 'positive macro NEGAT == 'negative import ToolsForSign R import RationalFunctionSign(R) import PowerSeriesLimitPackage(R, F) import TrigonometricManipulations(R, F) smpsign : P -> U sqfrSign: P -> U termSign: P -> U kerSign : K -> U listSign: (List P,Z) -> U insign : (F,SY,OFE, N) -> U psign : (F,SY,F,String, N) -> U ofesign : OFE -> U overRF : OFE -> Union(ORF, "failed") sign(f, x, a) == not real? f => "failed" insign(f, x, a, 0) sign(f, x, a, st) == not real? f => "failed" psign(f, x, a, st, 0) sign f == not real? f => "failed" (u := retractIfCan(f)@Union(RF,"failed")) case RF => sign(u::RF) (un := smpsign numer f) case Z and (ud := smpsign denom f) case Z => un::Z * ud::Z --abort if there are any variables not empty? variables f => "failed" -- abort in the presence of algebraic numbers member?('rootOf,map(name,operators f)$ListFunctions2(BasicOperator,Symbol)) => "failed" -- In the last resort try interval evaluation where feasible. if R has ConvertibleTo Float then import Interval(Float) import Expression(Interval Float) mapfun : (R -> Interval(Float)) := interval(convert(#1)$R) f2 : Expression(Interval Float) := map(mapfun,f)$FS2(R,F,Interval(Float),Expression(Interval Float)) r : Union(Interval(Float),"failed") := retractIfCan f2 if r case "failed" then return "failed" negative? r => return(-1) positive? r => return 1 zero? r => return 0 "failed" "failed" overRF a == (n := whatInfinity a) = 0 => (u := retractIfCan(retract(a)@F)@Union(RF,"failed")) _ case "failed" => "failed" u::RF::ORF n * plusInfinity()$ORF ofesign a == (n := whatInfinity a) ~= 0 => convert(n)@Z sign(retract(a)@F) insign(f, x, a, m) == m > 10 => "failed" -- avoid infinite loops for now (uf := retractIfCan(f)@Union(RF,"failed")) case RF and (ua := overRF a) case ORF => sign(uf::RF, x, ua::ORF) eq : Equation OFE := equation(x :: F :: OFE,a) (u := limit(f,eq)) case "failed" => "failed" u case OFE => (n := whatInfinity(u::OFE)) ~= 0 => convert(n)@Z (v := retract(u::OFE)@F) = 0 => (s := insign(differentiate(f, x), x, a, m + 1)) case "failed" => "failed" - s::Z * n sign v (u.leftHandLimit case "failed") or (u.rightHandLimit case "failed") => "failed" (ul := ofesign(u.leftHandLimit::OFE)) case "failed" => "failed" (ur := ofesign(u.rightHandLimit::OFE)) case "failed" => "failed" (ul::Z) = (ur::Z) => ul "failed" psign(f, x, a, st, m) == m > 10 => "failed" -- avoid infinite loops for now f = 0 => 0 (uf := retractIfCan(f)@Union(RF,"failed")) case RF and (ua := retractIfCan(a)@Union(RF,"failed")) case RF => sign(uf::RF, x, ua::RF, st) eq : Equation F := equation(x :: F,a) (u := limit(f,eq,st)) case "failed" => "failed" u case OFE => (n := whatInfinity(u::OFE)) ~= 0 => convert(n)@Z (v := retract(u::OFE)@F) = 0 => (s := psign(differentiate(f,x),x,a,st,m + 1)) case "failed"=> "failed" direction(st) * s::Z sign v smpsign p == (r := retractIfCan(p)@Union(R,"failed")) case R => sign(r::R) (u := sign(retract(unit(s := squareFree p))@R)) case "failed" => "failed" ans := u::Z for term in factorList s | odd?(term.xpnt) repeat (u := sqfrSign(term.fctr)) case "failed" => return "failed" ans := ans * u::Z ans sqfrSign p == (u := termSign first(l := monomials p)) case "failed" => "failed" listSign(rest l, u::Z) listSign(l, s) == for term in l repeat (u := termSign term) case "failed" => return "failed" not(s = u::Z) => return "failed" s termSign term == (us := sign leadingCoefficient term) case "failed" => "failed" for var in (lv := variables term) repeat odd? degree(term, var) => empty? rest lv and (vs := kerSign first lv) case Z => return(us::Z * vs::Z) return "failed" us::Z kerSign k == has?(op := operator k, NEGAT) => -1 has?(op, POSIT) or is?(op, 'pi) or is?(op,'exp) or is?(op,'cosh) or is?(op,'sech) => 1 empty?(arg := argument k) => "failed" (s := sign first arg) case "failed" => is?(op,"nthRoot" :: SY) => even?(retract(second arg)@Z) => 1 "failed" "failed" is?(op,"log" :: SY) => s::Z < 0 => "failed" sign(first arg - 1) is?(op,"tanh" :: SY) or is?(op,"sinh" :: SY) or is?(op,"csch" :: SY) or is?(op,"coth" :: SY) => s is?(op,"nthRoot" :: SY) => even?(retract(second arg)@Z) => s::Z < 0 => "failed" s s "failed" @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package LIMITPS PowerSeriesLimitPackage>> <<package SIGNEF ElementaryFunctionSign>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}