\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra lie.spad} \author{Johannes Grabmeier} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain LIE AssociatedLieAlgebra} <<domain LIE AssociatedLieAlgebra>>= )abbrev domain LIE AssociatedLieAlgebra ++ Author: J. Grabmeier ++ Date Created: 07 March 1991 ++ Date Last Updated: 14 June 1991 ++ Basic Operations: *,**,+,- ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: associated Liealgebra ++ References: ++ Description: ++ AssociatedLieAlgebra takes an algebra \spad{A} ++ and uses \spadfun{*$A} to define the ++ Lie bracket \spad{a*b := (a *$A b - b *$A a)} (commutator). Note that ++ the notation \spad{[a,b]} cannot be used due to ++ restrictions of the current compiler. ++ This domain only gives a Lie algebra if the ++ Jacobi-identity \spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds ++ for all \spad{a},\spad{b},\spad{c} in \spad{A}. ++ This relation can be checked by ++ \spad{lieAdmissible?()$A}. ++ ++ If the underlying algebra is of type ++ \spadtype{FramedNonAssociativeAlgebra(R)} (i.e. a non ++ associative algebra over R which is a free \spad{R}-module of finite ++ rank, together with a fixed \spad{R}-module basis), then the same ++ is true for the associated Lie algebra. ++ Also, if the underlying algebra is of type ++ \spadtype{FiniteRankNonAssociativeAlgebra(R)} (i.e. a non ++ associative algebra over R which is a free R-module of finite ++ rank), then the same is true for the associated Lie algebra. AssociatedLieAlgebra(R:CommutativeRing,A:NonAssociativeAlgebra R): public == private where public ==> Join (NonAssociativeAlgebra R, CoercibleTo A) with coerce : A -> % ++ coerce(a) coerces the element \spad{a} of the algebra \spad{A} ++ to an element of the Lie ++ algebra \spadtype{AssociatedLieAlgebra}(R,A). if A has FramedNonAssociativeAlgebra(R) then FramedNonAssociativeAlgebra(R) if A has FiniteRankNonAssociativeAlgebra(R) then FiniteRankNonAssociativeAlgebra(R) private ==> A add Rep := A (a:%) * (b:%) == (a::Rep) * $Rep (b::Rep) -$Rep (b::Rep) * $Rep (a::Rep) coerce(a:%):A == a :: Rep coerce(a:A):% == a :: % (a:%) ** (n:PositiveInteger) == n = 1 => a 0 @ \section{domain JORDAN AssociatedJordanAlgebra} <<domain JORDAN AssociatedJordanAlgebra>>= )abbrev domain JORDAN AssociatedJordanAlgebra ++ Author: J. Grabmeier ++ Date Created: 14 June 1991 ++ Date Last Updated: 14 June 1991 ++ Basic Operations: *,**,+,- ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: associated Jordan algebra ++ References: ++ Description: ++ AssociatedJordanAlgebra takes an algebra \spad{A} and uses \spadfun{*$A} ++ to define the new multiplications \spad{a*b := (a *$A b + b *$A a)/2} ++ (anticommutator). ++ The usual notation \spad{{a,b}_+} cannot be used due to ++ restrictions in the current language. ++ This domain only gives a Jordan algebra if the ++ Jordan-identity \spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds ++ for all \spad{a},\spad{b},\spad{c} in \spad{A}. ++ This relation can be checked by ++ \spadfun{jordanAdmissible?()$A}. ++ ++ If the underlying algebra is of type ++ \spadtype{FramedNonAssociativeAlgebra(R)} (i.e. a non ++ associative algebra over R which is a free R-module of finite ++ rank, together with a fixed R-module basis), then the same ++ is true for the associated Jordan algebra. ++ Moreover, if the underlying algebra is of type ++ \spadtype{FiniteRankNonAssociativeAlgebra(R)} (i.e. a non ++ associative algebra over R which is a free R-module of finite ++ rank), then the same true for the associated Jordan algebra. AssociatedJordanAlgebra(R:CommutativeRing,A:NonAssociativeAlgebra R): public == private where public ==> Join (NonAssociativeAlgebra R, CoercibleTo A) with coerce : A -> % ++ coerce(a) coerces the element \spad{a} of the algebra \spad{A} ++ to an element of the Jordan algebra ++ \spadtype{AssociatedJordanAlgebra}(R,A). if A has FramedNonAssociativeAlgebra(R) then _ FramedNonAssociativeAlgebra(R) if A has FiniteRankNonAssociativeAlgebra(R) then _ FiniteRankNonAssociativeAlgebra(R) private ==> A add Rep := A two : R := (1$R + 1$R) oneHalf : R := (recip two) :: R (a:%) * (b:%) == zero? two => error "constructor must no be called with Ring of characteristic 2" ((a::Rep) * $Rep (b::Rep) +$Rep (b::Rep) * $Rep (a::Rep)) * oneHalf -- (a::Rep) * $Rep (b::Rep) +$Rep (b::Rep) * $Rep (a::Rep) coerce(a:%):A == a :: Rep coerce(a:A):% == a :: % (a:%) ** (n:PositiveInteger) == a @ \section{domain LSQM LieSquareMatrix} <<domain LSQM LieSquareMatrix>>= )abbrev domain LSQM LieSquareMatrix ++ Author: J. Grabmeier ++ Date Created: 07 March 1991 ++ Date Last Updated: 08 March 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ LieSquareMatrix(n,R) implements the Lie algebra of the n by n ++ matrices over the commutative ring R. ++ The Lie bracket (commutator) of the algebra is given by ++ \spad{a*b := (a *$SQMATRIX(n,R) b - b *$SQMATRIX(n,R) a)}, ++ where \spadfun{*$SQMATRIX(n,R)} is the usual matrix multiplication. LieSquareMatrix(n,R): Exports == Implementation where n : PositiveInteger R : CommutativeRing Row ==> DirectProduct(n,R) Col ==> DirectProduct(n,R) Exports ==> Join(SquareMatrixCategory(n,R,Row,Col), CoercibleTo Matrix R,_ FramedNonAssociativeAlgebra R) --with Implementation ==> AssociatedLieAlgebra (R,SquareMatrix(n, R)) add Rep := AssociatedLieAlgebra (R,SquareMatrix(n, R)) -- local functions n2 : PositiveInteger := n*n convDM : DirectProduct(n2,R) -> % conv : DirectProduct(n2,R) -> SquareMatrix(n,R) --++ converts n2-vector to (n,n)-matrix row by row conv v == cond : Matrix(R) := new(n,n,0$R)$Matrix(R) z : Integer := 0 for i in 1..n repeat for j in 1..n repeat z := z+1 setelt(cond,i,j,v.z) squareMatrix(cond)$SquareMatrix(n, R) coordinates(a:%,b:Vector(%)):Vector(R) == -- only valid for b canonicalBasis res : Vector R := new(n2,0$R) z : Integer := 0 for i in 1..n repeat for j in 1..n repeat z := z+1 res.z := elt(a,i,j)$% res convDM v == sq := conv v coerce(sq)$Rep :: % basis() == n2 : PositiveInteger := n*n ldp : List DirectProduct(n2,R) := [unitVector(i::PositiveInteger)$DirectProduct(n2,R) for i in 1..n2] res:Vector % := vector map(convDM,_ ldp)$ListFunctions2(DirectProduct(n2,R), %) someBasis() == basis() rank() == n*n -- transpose: % -> % -- ++ computes the transpose of a matrix -- squareMatrix: Matrix R -> % -- ++ converts a Matrix to a LieSquareMatrix -- coerce: % -> Matrix R -- ++ converts a LieSquareMatrix to a Matrix -- symdecomp : % -> Record(sym:%,antisym:%) -- if R has commutative("*") then -- minorsVect: -> Vector(Union(R,"uncomputed")) --range: 1..2**n-1 -- if R has commutative("*") then central -- if R has commutative("*") and R has unitsKnown then unitsKnown @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain LIE AssociatedLieAlgebra>> <<domain JORDAN AssociatedJordanAlgebra>> <<domain LSQM LieSquareMatrix>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}