\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra leadcdet.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package LEADCDET LeadingCoefDetermination} <<package LEADCDET LeadingCoefDetermination>>= )abbrev package LEADCDET LeadingCoefDetermination ++ Author : P.Gianni, May 1990 ++ Description: ++ Package for leading coefficient determination in the lifting step. ++ Package working for every R euclidean with property "F". LeadingCoefDetermination(OV,E,Z,P) : C == T where OV : OrderedSet E : OrderedAbelianMonoidSup Z : EuclideanDomain BP ==> SparseUnivariatePolynomial Z P : PolynomialCategory(Z,E,OV) NNI ==> NonNegativeInteger LeadFact ==> Record(polfac:List(P),correct:Z,corrfact:List(BP)) ParFact ==> Record(irr:P,pow:Integer) FinalFact ==> Record(contp:Z,factors:List(ParFact)) C == with polCase : (Z,NNI,List(Z)) -> Boolean ++ polCase(contprod, numFacts, evallcs), where contprod is the ++ product of the content of the leading coefficient of ++ the polynomial to be factored with the content of the ++ evaluated polynomial, numFacts is the number of factors ++ of the leadingCoefficient, and evallcs is the list of ++ the evaluated factors of the leadingCoefficient, returns ++ true if the factors of the leading Coefficient can be ++ distributed with this valuation. distFact : (Z,List(BP),FinalFact,List(Z),List(OV),List(Z)) -> Union(LeadFact,"failed") ++ distFact(contm,unilist,plead,vl,lvar,lval), where contm is ++ the content of the evaluated polynomial, unilist is the list ++ of factors of the evaluated polynomial, plead is the complete ++ factorization of the leading coefficient, vl is the list ++ of factors of the leading coefficient evaluated, lvar is the ++ list of variables, lval is the list of values, returns a record ++ giving the list of leading coefficients to impose on the univariate ++ factors, T == add distribute: (Z,List(BP),List(P),List(Z),List(OV),List(Z)) -> LeadFact checkpow : (Z,Z) -> NNI polCase(d:Z,nk:NNI,lval:List(Z)):Boolean == -- d is the product of the content lc m (case polynomial) -- and the cont of the polynomial evaluated q:Z distlist:List(Z) := [d] for i in 1..nk repeat q := unitNormal(lval.i).canonical for j in 0..(i-1)::NNI repeat y := distlist.((i-j)::NNI) while not one? y repeat y := gcd(y,q) q := q quo y if q=1 then return false distlist := append(distlist,[q]) true checkpow(a:Z,b:Z) : NonNegativeInteger == qt: Union(Z,"failed") for i in 0.. repeat qt:= b exquo a if qt case "failed" then return i b:=qt::Z distribute(contm:Z,unilist:List(BP),pl:List(P),vl:List(Z), lvar:List(OV),lval:List(Z)): LeadFact == d,lcp : Z nf:NNI:=#unilist for i in 1..nf repeat lcp := leadingCoefficient (unilist.i) d:= gcd(lcp,vl.i) pl.i := (lcp quo d)*pl.i d := vl.i quo d unilist.i := d*unilist.i contm := contm quo d if not one? contm then for i in 1..nf repeat pl.i := contm*pl.i [pl,contm,unilist]$LeadFact distFact(contm:Z,unilist:List(BP),plead:FinalFact, vl:List(Z),lvar:List(OV),lval:List(Z)):Union(LeadFact,"failed") == h:NonNegativeInteger c,d : Z lpol:List(P):=[] lexp:List(Integer):=[] nf:NNI := #unilist vl := reverse vl --lpol and vl reversed so test from right to left for fpl in plead.factors repeat lpol:=[fpl.irr,:lpol] lexp:=[fpl.pow,:lexp] vlp:List(Z):= [1$Z for i in 1..nf] aux : List(P) := [1$P for i in 1..nf] for i in 1..nf repeat c := contm*leadingCoefficient unilist.i c=1 or c=-1 => "next i" for k in 1..(# lpol) repeat lexp.k=0 => "next factor" h:= checkpow(vl.k,c) if not zero? h then if h>lexp.k then return "failed" lexp.k:=lexp.k-h aux.i := aux.i*(lpol.k ** h) d:= vl.k**h vlp.i:= vlp.i*d c:= c quo d if contm=1 then vlp.i:=c for k in 1..(# lpol) repeat if lexp.k ~= 0 then return "failed" contm =1 => [[vlp.i*aux.i for i in 1..nf],1,unilist]$LeadFact distribute(contm,unilist,aux,vlp,lvar,lval) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package LEADCDET LeadingCoefDetermination>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}