\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra laurent.spad} \author{Clifton J. Williamson, Bill Burge} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category ULSCCAT UnivariateLaurentSeriesConstructorCategory} <<category ULSCCAT UnivariateLaurentSeriesConstructorCategory>>= )abbrev category ULSCCAT UnivariateLaurentSeriesConstructorCategory ++ Author: Clifton J. Williamson ++ Date Created: 6 February 1990 ++ Date Last Updated: 10 May 1990 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: series, Laurent, Taylor ++ Examples: ++ References: ++ Description: ++ This is a category of univariate Laurent series constructed from ++ univariate Taylor series. A Laurent series is represented by a pair ++ \spad{[n,f(x)]}, where n is an arbitrary integer and \spad{f(x)} ++ is a Taylor series. This pair represents the Laurent series ++ \spad{x**n * f(x)}. UnivariateLaurentSeriesConstructorCategory(Coef,UTS):_ Category == Definition where Coef: Ring UTS : UnivariateTaylorSeriesCategory Coef I ==> Integer Definition ==> Join(UnivariateLaurentSeriesCategory(Coef),_ RetractableTo UTS, CoercibleFrom UTS) with laurent: (I,UTS) -> % ++ \spad{laurent(n,f(x))} returns \spad{x**n * f(x)}. degree: % -> I ++ \spad{degree(f(x))} returns the degree of the lowest order term of ++ \spad{f(x)}, which may have zero as a coefficient. taylorRep: % -> UTS ++ \spad{taylorRep(f(x))} returns \spad{g(x)}, where ++ \spad{f = x**n * g(x)} is represented by \spad{[n,g(x)]}. removeZeroes: % -> % ++ \spad{removeZeroes(f(x))} removes leading zeroes from the ++ representation of the Laurent series \spad{f(x)}. ++ A Laurent series is represented by (1) an exponent and ++ (2) a Taylor series which may have leading zero coefficients. ++ When the Taylor series has a leading zero coefficient, the ++ 'leading zero' is removed from the Laurent series as follows: ++ the series is rewritten by increasing the exponent by 1 and ++ dividing the Taylor series by its variable. ++ Note: \spad{removeZeroes(f)} removes all leading zeroes from f removeZeroes: (I,%) -> % ++ \spad{removeZeroes(n,f(x))} removes up to n leading zeroes from ++ the Laurent series \spad{f(x)}. ++ A Laurent series is represented by (1) an exponent and ++ (2) a Taylor series which may have leading zero coefficients. ++ When the Taylor series has a leading zero coefficient, the ++ 'leading zero' is removed from the Laurent series as follows: ++ the series is rewritten by increasing the exponent by 1 and ++ dividing the Taylor series by its variable. taylor: % -> UTS ++ taylor(f(x)) converts the Laurent series f(x) to a Taylor series, ++ if possible. Error: if this is not possible. taylorIfCan: % -> Union(UTS,"failed") ++ \spad{taylorIfCan(f(x))} converts the Laurent series \spad{f(x)} ++ to a Taylor series, if possible. If this is not possible, ++ "failed" is returned. if Coef has Field then QuotientFieldCategory(UTS) --++ the quotient field of univariate Taylor series over a field is --++ the field of Laurent series add zero? x == zero? taylorRep x retract(x:%):UTS == taylor x retractIfCan(x:%):Union(UTS,"failed") == taylorIfCan x @ \section{domain ULSCONS UnivariateLaurentSeriesConstructor} <<domain ULSCONS UnivariateLaurentSeriesConstructor>>= )abbrev domain ULSCONS UnivariateLaurentSeriesConstructor ++ Authors: Bill Burge, Clifton J. Williamson ++ Date Created: August 1988 ++ Date Last Updated: 17 June 1996 ++ Fix History: ++ 14 June 1996: provided missing exquo: (%,%) -> % (Frederic Lehobey) ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: series, Laurent, Taylor ++ Examples: ++ References: ++ Description: ++ This package enables one to construct a univariate Laurent series ++ domain from a univariate Taylor series domain. Univariate ++ Laurent series are represented by a pair \spad{[n,f(x)]}, where n is ++ an arbitrary integer and \spad{f(x)} is a Taylor series. This pair ++ represents the Laurent series \spad{x**n * f(x)}. UnivariateLaurentSeriesConstructor(Coef,UTS):_ Exports == Implementation where Coef : Ring UTS : UnivariateTaylorSeriesCategory Coef I ==> Integer L ==> List NNI ==> NonNegativeInteger OUT ==> OutputForm P ==> Polynomial Coef RF ==> Fraction Polynomial Coef RN ==> Fraction Integer ST ==> Stream Coef TERM ==> Record(k:I,c:Coef) monom ==> monomial$UTS EFULS ==> ElementaryFunctionsUnivariateLaurentSeries(Coef,UTS,%) STTAYLOR ==> StreamTaylorSeriesOperations Coef Exports ==> UnivariateLaurentSeriesConstructorCategory(Coef,UTS) Implementation ==> add --% representation Rep := Record(expon:I,ps:UTS) getExpon : % -> I getUTS : % -> UTS getExpon x == x.expon getUTS x == x.ps --% creation and destruction laurent(n,psr) == [n,psr] taylorRep x == getUTS x degree x == getExpon x 0 == laurent(0,0) 1 == laurent(0,1) monomial(s,e) == laurent(e,s::UTS) coerce(uts:UTS):% == laurent(0,uts) coerce(r:Coef):% == r :: UTS :: % coerce(i:I):% == i :: Coef :: % taylorIfCan uls == n := getExpon uls n < 0 => uls := removeZeroes(-n,uls) getExpon(uls) < 0 => "failed" getUTS uls n = 0 => getUTS uls getUTS(uls) * monom(1,n :: NNI) taylor uls == (uts := taylorIfCan uls) case "failed" => error "taylor: Laurent series has a pole" uts :: UTS termExpon: TERM -> I termExpon term == term.k termCoef: TERM -> Coef termCoef term == term.c rec: (I,Coef) -> TERM rec(exponent,coef) == [exponent,coef] recs: (ST,I) -> Stream TERM recs(st,n) == delay empty? st => empty() zero? (coef := frst st) => recs(rst st,n + 1) concat(rec(n,coef),recs(rst st,n + 1)) terms x == recs(coefficients getUTS x,getExpon x) recsToCoefs: (Stream TERM,I) -> ST recsToCoefs(st,n) == delay empty? st => empty() term := frst st; ex := termExpon term n = ex => concat(termCoef term,recsToCoefs(rst st,n + 1)) concat(0,recsToCoefs(rst st,n + 1)) series st == empty? st => 0 ex := termExpon frst st laurent(ex,series recsToCoefs(st,ex)) --% normalizations removeZeroes x == empty? coefficients(xUTS := getUTS x) => 0 coefficient(xUTS,0) = 0 => removeZeroes laurent(getExpon(x) + 1,quoByVar xUTS) x removeZeroes(n,x) == n <= 0 => x empty? coefficients(xUTS := getUTS x) => 0 coefficient(xUTS,0) = 0 => removeZeroes(n - 1,laurent(getExpon(x) + 1,quoByVar xUTS)) x --% predicates x = y == EQ(x,y)$Lisp => true (expDiff := getExpon(x) - getExpon(y)) = 0 => getUTS(x) = getUTS(y) abs(expDiff) > _$streamCount$Lisp => false expDiff > 0 => getUTS(x) * monom(1,expDiff :: NNI) = getUTS(y) getUTS(y) * monom(1,(- expDiff) :: NNI) = getUTS(x) pole? x == (n := degree x) >= 0 => false x := removeZeroes(-n,x) degree x < 0 --% arithmetic x + y == n := getExpon(x) - getExpon(y) n >= 0 => laurent(getExpon y,getUTS(y) + getUTS(x) * monom(1,n::NNI)) laurent(getExpon x,getUTS(x) + getUTS(y) * monom(1,(-n)::NNI)) x - y == n := getExpon(x) - getExpon(y) n >= 0 => laurent(getExpon y,getUTS(x) * monom(1,n::NNI) - getUTS(y)) laurent(getExpon x,getUTS(x) - getUTS(y) * monom(1,(-n)::NNI)) x:% * y:% == laurent(getExpon x + getExpon y,getUTS x * getUTS y) x:% ** n:NNI == zero? n => zero? x => error "0 ** 0 is undefined" 1 laurent(n * getExpon(x),getUTS(x) ** n) recip x == x := removeZeroes(1000,x) zero? coefficient(x,d := degree x) => "failed" (uts := recip getUTS x) case "failed" => "failed" laurent(-d,uts :: UTS) elt(uls1:%,uls2:%) == (uts := taylorIfCan uls2) case "failed" => error "elt: second argument must have positive order" uts2 := uts :: UTS not zero? coefficient(uts2,0) => error "elt: second argument must have positive order" if (deg := getExpon uls1) < 0 then uls1 := removeZeroes(-deg,uls1) (deg := getExpon uls1) < 0 => (recipr := recip(uts2 :: %)) case "failed" => error "elt: second argument not invertible" uts1 := taylor(uls1 * monomial(1,-deg)) (elt(uts1,uts2) :: %) * (recipr :: %) ** ((-deg) :: NNI) elt(taylor uls1,uts2) :: % eval(uls:%,r:Coef) == if (n := getExpon uls) < 0 then uls := removeZeroes(-n,uls) uts := getUTS uls (n := getExpon uls) < 0 => zero? r => error "eval: 0 raised to negative power" (recipr := recip r) case "failed" => error "eval: non-unit raised to negative power" (recipr :: Coef) ** ((-n) :: NNI) *$STTAYLOR eval(uts,r) zero? n => eval(uts,r) r ** (n :: NNI) *$STTAYLOR eval(uts,r) --% values variable x == variable getUTS x center x == center getUTS x coefficient(x,n) == a := n - getExpon(x) a >= 0 => coefficient(getUTS x,a :: NNI) 0 elt(x:%,n:I) == coefficient(x,n) --% other functions order x == getExpon x + order getUTS x order(x,n) == (m := n - (e := getExpon x)) < 0 => n e + order(getUTS x,m :: NNI) truncate(x,n) == (m := n - (e := getExpon x)) < 0 => 0 laurent(e,truncate(getUTS x,m :: NNI)) truncate(x,n1,n2) == if n2 < n1 then (n1,n2) := (n2,n1) (m1 := n1 - (e := getExpon x)) < 0 => truncate(x,n2) laurent(e,truncate(getUTS x,m1 :: NNI,(n2 - e) :: NNI)) if Coef has IntegralDomain then rationalFunction(x,n) == (m := n - (e := getExpon x)) < 0 => 0 poly := polynomial(getUTS x,m :: NNI) :: RF zero? e => poly v := variable(x) :: RF; c := center(x) :: P :: RF positive? e => poly * (v - c) ** (e :: NNI) poly / (v - c) ** ((-e) :: NNI) rationalFunction(x,n1,n2) == if n2 < n1 then (n1,n2) := (n2,n1) (m1 := n1 - (e := getExpon x)) < 0 => rationalFunction(x,n2) poly := polynomial(getUTS x,m1 :: NNI,(n2 - e) :: NNI) :: RF zero? e => poly v := variable(x) :: RF; c := center(x) :: P :: RF positive? e => poly * (v - c) ** (e :: NNI) poly / (v - c) ** ((-e) :: NNI) -- La fonction < exquo > manque dans laurent.spad, --les lignes suivantes le mettent en evidence : -- --ls := laurent(0,series [i for i in 1..])$ULS(INT,x,0) ---- missing function in laurent.spad of Axiom 2.0a version of ---- Friday March 10, 1995 at 04:15:22 on 615: --exquo(ls,ls) -- -- Je l'ai ajoutee a laurent.spad. -- --Frederic Lehobey x exquo y == x := removeZeroes(1000,x) y := removeZeroes(1000,y) zero? coefficient(y, d := degree y) => "failed" (uts := (getUTS x) exquo (getUTS y)) case "failed" => "failed" laurent(degree x-d,uts :: UTS) if Coef has coerce: Symbol -> Coef then if Coef has "**": (Coef,I) -> Coef then approximate(x,n) == (m := n - (e := getExpon x)) < 0 => 0 app := approximate(getUTS x,m :: NNI) zero? e => app app * ((variable(x) :: Coef) - center(x)) ** e complete x == laurent(getExpon x,complete getUTS x) extend(x,n) == e := getExpon x (m := n - e) < 0 => x laurent(e,extend(getUTS x,m :: NNI)) map(f:Coef -> Coef,x:%) == laurent(getExpon x,map(f,getUTS x)) multiplyCoefficients(f,x) == e := getExpon x laurent(e,multiplyCoefficients(f(e + #1),getUTS x)) multiplyExponents(x,n) == laurent(n * getExpon x,multiplyExponents(getUTS x,n)) differentiate x == e := getExpon x laurent(e - 1,multiplyCoefficients((e + #1) :: Coef,getUTS x)) if Coef has PartialDifferentialRing(Symbol) then differentiate(x:%,s:Symbol) == (s = variable(x)) => differentiate x map(differentiate(#1,s),x) - differentiate(center x,s)*differentiate(x) characteristic == characteristic$Coef if Coef has Field then retract(x:%):UTS == taylor x retractIfCan(x:%):Union(UTS,"failed") == taylorIfCan x (x:%) ** (n:I) == zero? n => zero? x => error "0 ** 0 is undefined" 1 n > 0 => laurent(n * getExpon(x),getUTS(x) ** (n :: NNI)) xInv := inv x; minusN := (-n) :: NNI laurent(minusN * getExpon(xInv),getUTS(xInv) ** minusN) (x:UTS) * (y:%) == (x :: %) * y (x:%) * (y:UTS) == x * (y :: %) inv x == (xInv := recip x) case "failed" => error "multiplicative inverse does not exist" xInv :: % (x:%) / (y:%) == (yInv := recip y) case "failed" => error "inv: multiplicative inverse does not exist" x * (yInv :: %) (x:UTS) / (y:UTS) == (x :: %) / (y :: %) numer x == (n := degree x) >= 0 => taylor x x := removeZeroes(-n,x) (n := degree x) = 0 => taylor x getUTS x denom x == (n := degree x) >= 0 => 1 x := removeZeroes(-n,x) (n := degree x) = 0 => 1 monom(1,(-n) :: NNI) --% algebraic and transcendental functions if Coef has Algebra Fraction Integer then coerce(r:RN) == r :: Coef :: % if Coef has Field then (x:%) ** (r:RN) == x **$EFULS r exp x == exp(x)$EFULS log x == log(x)$EFULS sin x == sin(x)$EFULS cos x == cos(x)$EFULS tan x == tan(x)$EFULS cot x == cot(x)$EFULS sec x == sec(x)$EFULS csc x == csc(x)$EFULS asin x == asin(x)$EFULS acos x == acos(x)$EFULS atan x == atan(x)$EFULS acot x == acot(x)$EFULS asec x == asec(x)$EFULS acsc x == acsc(x)$EFULS sinh x == sinh(x)$EFULS cosh x == cosh(x)$EFULS tanh x == tanh(x)$EFULS coth x == coth(x)$EFULS sech x == sech(x)$EFULS csch x == csch(x)$EFULS asinh x == asinh(x)$EFULS acosh x == acosh(x)$EFULS atanh x == atanh(x)$EFULS acoth x == acoth(x)$EFULS asech x == asech(x)$EFULS acsch x == acsch(x)$EFULS ratInv: I -> Coef ratInv n == zero? n => 1 inv(n :: RN) :: Coef integrate x == not zero? coefficient(x,-1) => error "integrate: series has term of order -1" e := getExpon x laurent(e + 1,multiplyCoefficients(ratInv(e + 1 + #1),getUTS x)) if Coef has integrate: (Coef,Symbol) -> Coef and _ Coef has variables: Coef -> List Symbol then integrate(x:%,s:Symbol) == (s = variable(x)) => integrate x not entry?(s,variables center x) => map(integrate(#1,s),x) error "integrate: center is a function of variable of integration" if Coef has TranscendentalFunctionCategory and _ Coef has PrimitiveFunctionCategory and _ Coef has AlgebraicallyClosedFunctionSpace Integer then integrateWithOneAnswer: (Coef,Symbol) -> Coef integrateWithOneAnswer(f,s) == res := integrate(f,s)$FunctionSpaceIntegration(I,Coef) res case Coef => res :: Coef first(res :: List Coef) integrate(x:%,s:Symbol) == (s = variable(x)) => integrate x not entry?(s,variables center x) => map(integrateWithOneAnswer(#1,s),x) error "integrate: center is a function of variable of integration" termOutput:(I,Coef,OUT) -> OUT termOutput(k,c,vv) == -- creates a term c * vv ** k k = 0 => c :: OUT mon := k = 1 => vv vv ** (k :: OUT) c = 1 => mon c = -1 => -mon (c :: OUT) * mon showAll?:() -> Boolean -- check a global Lisp variable showAll?() == true termsToOutputForm:(I,ST,OUT) -> OUT termsToOutputForm(m,uu,xxx) == l : L OUT := empty() empty? uu => (0$Coef) :: OUT n : NNI ; count : NNI := _$streamCount$Lisp for n in 0..count while not empty? uu repeat if frst(uu) ~= 0 then l := concat(termOutput((n :: I) + m,frst(uu),xxx),l) uu := rst uu if showAll?() then for n in (count + 1).. while explicitEntries? uu and _ not eq?(uu,rst uu) repeat if frst(uu) ~= 0 then l := concat(termOutput((n::I) + m,frst(uu),xxx),l) uu := rst uu l := explicitlyEmpty? uu => l eq?(uu,rst uu) and frst uu = 0 => l concat(prefix("O" :: OUT,[xxx ** ((n :: I) + m) :: OUT]),l) empty? l => (0$Coef) :: OUT reduce("+",reverse! l) coerce(x:%):OUT == x := removeZeroes(_$streamCount$Lisp,x) m := degree x uts := getUTS x p := coefficients uts var := variable uts; cen := center uts xxx := zero? cen => var :: OUT paren(var :: OUT - cen :: OUT) termsToOutputForm(m,p,xxx) @ \section{domain ULS UnivariateLaurentSeries} <<domain ULS UnivariateLaurentSeries>>= )abbrev domain ULS UnivariateLaurentSeries ++ Author: Clifton J. Williamson ++ Date Created: 18 January 1990 ++ Date Last Updated: 21 September 1993 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: series, Laurent ++ Examples: ++ References: ++ Description: Dense Laurent series in one variable ++ \spadtype{UnivariateLaurentSeries} is a domain representing Laurent ++ series in one variable with coefficients in an arbitrary ring. The ++ parameters of the type specify the coefficient ring, the power series ++ variable, and the center of the power series expansion. For example, ++ \spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in ++ \spad{(x - 3)} with integer coefficients. UnivariateLaurentSeries(Coef,var,cen): Exports == Implementation where Coef : Ring var : Symbol cen : Coef I ==> Integer UTS ==> UnivariateTaylorSeries(Coef,var,cen) Exports ==> UnivariateLaurentSeriesConstructorCategory(Coef,UTS) with coerce: Variable(var) -> % ++ \spad{coerce(var)} converts the series variable \spad{var} into a ++ Laurent series. differentiate: (%,Variable(var)) -> % ++ \spad{differentiate(f(x),x)} returns the derivative of ++ \spad{f(x)} with respect to \spad{x}. if Coef has Algebra Fraction Integer then integrate: (%,Variable(var)) -> % ++ \spad{integrate(f(x))} returns an anti-derivative of the power ++ series \spad{f(x)} with constant coefficient 0. ++ We may integrate a series when we can divide coefficients ++ by integers. Implementation ==> UnivariateLaurentSeriesConstructor(Coef,UTS) add variable x == var center x == cen coerce(v:Variable(var)) == zero? cen => monomial(1,1) monomial(1,1) + monomial(cen,0) differentiate(x:%,v:Variable(var)) == differentiate x if Coef has Algebra Fraction Integer then integrate(x:%,v:Variable(var)) == integrate x @ \section{package ULS2 UnivariateLaurentSeriesFunctions2} <<package ULS2 UnivariateLaurentSeriesFunctions2>>= )abbrev package ULS2 UnivariateLaurentSeriesFunctions2 ++ Author: Clifton J. Williamson ++ Date Created: 5 March 1990 ++ Date Last Updated: 5 March 1990 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: Laurent series, map ++ Examples: ++ References: ++ Description: Mapping package for univariate Laurent series ++ This package allows one to apply a function to the coefficients of ++ a univariate Laurent series. UnivariateLaurentSeriesFunctions2(Coef1,Coef2,var1,var2,cen1,cen2):_ Exports == Implementation where Coef1 : Ring Coef2 : Ring var1: Symbol var2: Symbol cen1: Coef1 cen2: Coef2 ULS1 ==> UnivariateLaurentSeries(Coef1, var1, cen1) ULS2 ==> UnivariateLaurentSeries(Coef2, var2, cen2) UTS1 ==> UnivariateTaylorSeries(Coef1, var1, cen1) UTS2 ==> UnivariateTaylorSeries(Coef2, var2, cen2) UTSF2 ==> UnivariateTaylorSeriesFunctions2(Coef1, Coef2, UTS1, UTS2) Exports ==> with map: (Coef1 -> Coef2,ULS1) -> ULS2 ++ \spad{map(f,g(x))} applies the map f to the coefficients of the Laurent ++ series \spad{g(x)}. Implementation ==> add map(f,ups) == laurent(degree ups, map(f, taylorRep ups)$UTSF2) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category ULSCCAT UnivariateLaurentSeriesConstructorCategory>> <<domain ULSCONS UnivariateLaurentSeriesConstructor>> <<domain ULS UnivariateLaurentSeries>> <<package ULS2 UnivariateLaurentSeriesFunctions2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}