\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra intrf.spad}
\author{Barry Trager, Renaud Rioboo, Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package SUBRESP SubResultantPackage}
<<package SUBRESP SubResultantPackage>>=
)abbrev package SUBRESP SubResultantPackage
++ Subresultants
++ Author: Barry Trager, Renaud Rioboo
++ Date Created: 1987
++ Date Last Updated: August 2000
++ Description:
++ This package computes the subresultants of two polynomials which is needed
++ for the `Lazard Rioboo' enhancement to Tragers integrations formula
++ For efficiency reasons this has been rewritten to call Lionel Ducos
++ package which is currently the best one.
++
SubResultantPackage(R, UP): Exports == Implementation where
  R : IntegralDomain
  UP: UnivariatePolynomialCategory R
 
  Z   ==> Integer
  N   ==> NonNegativeInteger
 
  Exports ==> with
    subresultantVector: (UP, UP) -> PrimitiveArray UP
      ++ subresultantVector(p, q) returns \spad{[p0,...,pn]}
      ++ where pi is the i-th subresultant of p and q.
      ++ In particular, \spad{p0 = resultant(p, q)}.
    if R has EuclideanDomain then
      primitivePart     : (UP,  R) -> UP
        ++ primitivePart(p, q) reduces the coefficient of p
        ++ modulo q, takes the primitive part of the result,
        ++ and ensures that the leading coefficient of that
        ++ result is monic.
 
  Implementation ==> add

    Lionel ==> PseudoRemainderSequence(R,UP)

    if R has EuclideanDomain then
      primitivePart(p, q) ==
         rec := extendedEuclidean(leadingCoefficient p, q,
                                  1)::Record(coef1:R, coef2:R)
         unitCanonical primitivePart map((rec.coef1 * #1) rem q, p)
 
    subresultantVector(p1, p2) ==
       F : UP -- auxiliary stuff !
       res : PrimitiveArray(UP) := new(2+max(degree(p1),degree(p2)), 0)
       --
       -- kind of stupid interface to Lionel's  Package !!!!!!!!!!!!
       -- might have been wiser to rewrite the loop ...
       -- But I'm too lazy. [rr]
       --
       l := chainSubResultants(p1,p2)$Lionel
       --
       -- this returns the chain of non null subresultants !
       -- we must  rebuild subresultants from this.
       -- we really hope Lionel Ducos minded what he wrote
       -- since we are fully blind !
       --
       null l =>
         -- Hum it seems that Lionel returns [] when min(|p1|,|p2|) = 0
         zero?(degree(p1)) =>
           res.degree(p2) := p2
           if positive? degree(p2)
           then
             res.((degree(p2)-1)::NonNegativeInteger) := p1
             res.0 := (leadingCoefficient(p1)**(degree p2)) :: UP
           else
             -- both are of degree 0 the resultant is 1 according to Loos
             res.0 := 1
           res
         zero?(degree(p2)) =>
           if positive? degree(p1)
           then
             res.((degree(p1)-1)::NonNegativeInteger) := p2
             res.0 := (leadingCoefficient(p2)**(degree p1)) :: UP
           else
             -- both are of degree 0 the resultant is 1 according to Loos
             res.0 := 1
           res
         error "SUBRESP: strange Subresultant chain from PRS"
       Sn := first(l)
       --
       -- as of Loos definitions last subresultant should not be defective
       --
       l := rest(l)
       n := degree(Sn)
       F := Sn
       null l => error "SUBRESP: strange Subresultant chain from PRS"
       zero? Sn => error "SUBRESP: strange Subresultant chain from PRS"
       while (l ~= []) repeat
         res.(n) := Sn
         F := first(l)
         l := rest(l)
         -- F is potentially defective
         if degree(F) = n
         then
           --
           -- F is defective
           --
           null l => error "SUBRESP: strange Subresultant chain from PRS"
           Sn := first(l)
           l := rest(l)
           n := degree(Sn)
           res.((n-1)::NonNegativeInteger) := F
         else
           --
           -- F is non defective
           --
           degree(F) < n => error "strange result !"
           Sn := F
           n := degree(Sn)
       --
       -- Lionel forgets about p1 if |p1| > |p2|
       -- forgets about p2 if |p2| > |p1|
       -- but he reminds p2 if |p1| = |p2|
       -- a glance at Loos should correct this !
       --
       res.n := Sn
       --
       -- Loos definition
       --
       if degree(p1) = degree(p2)
       then
         res.((degree p1)+1) := p1
       else
         if degree(p1) > degree(p2)
         then
           res.(degree p1) := p1
         else
           res.(degree p2) := p2
       res

@
\section{package MONOTOOL MonomialExtensionTools}
<<package MONOTOOL MonomialExtensionTools>>=
)abbrev package MONOTOOL MonomialExtensionTools
++ Tools for handling monomial extensions
++ Author: Manuel Bronstein
++ Date Created: 18 August 1992
++ Date Last Updated: 3 June 1993
++ Description: Tools for handling monomial extensions.
MonomialExtensionTools(F, UP): Exports == Implementation where
  F : Field
  UP: UnivariatePolynomialCategory F

  RF ==> Fraction UP
  FR ==> Factored UP

  Exports ==> with
    split      : (UP, UP -> UP) -> Record(normal:UP, special:UP)
      ++ split(p, D) returns \spad{[n,s]} such that \spad{p = n s},
      ++ all the squarefree factors of n are normal w.r.t. D,
      ++ and s is special w.r.t. D.
      ++ D is the derivation to use.
    splitSquarefree: (UP, UP -> UP) -> Record(normal:FR, special:FR)
      ++ splitSquarefree(p, D) returns
      ++ \spad{[n_1 n_2\^2 ... n_m\^m, s_1 s_2\^2 ... s_q\^q]} such that
      ++ \spad{p = n_1 n_2\^2 ... n_m\^m s_1 s_2\^2 ... s_q\^q}, each
      ++ \spad{n_i} is normal w.r.t. D and each \spad{s_i} is special
      ++ w.r.t D.
      ++ D is the derivation to use.
    normalDenom: (RF, UP -> UP) -> UP
      ++ normalDenom(f, D) returns the product of all the normal factors
      ++ of \spad{denom(f)}.
      ++ D is the derivation to use.
    decompose  : (RF, UP -> UP) -> Record(poly:UP, normal:RF, special:RF)
      ++ decompose(f, D) returns \spad{[p,n,s]} such that \spad{f = p+n+s},
      ++ all the squarefree factors of \spad{denom(n)} are normal w.r.t. D,
      ++ \spad{denom(s)} is special w.r.t. D,
      ++ and n and s are proper fractions (no pole at infinity).
      ++ D is the derivation to use.

  Implementation ==> add
    normalDenom(f, derivation) == split(denom f, derivation).normal

    split(p, derivation) ==
      pbar := (gcd(p, derivation p) exquo gcd(p, differentiate p))::UP
      zero? degree pbar => [p, 1]
      rec := split((p exquo pbar)::UP, derivation)
      [rec.normal, pbar * rec.special]

    splitSquarefree(p, derivation) ==
      s:Factored(UP) := 1
      n := s
      q := squareFree p
      for rec in factors q repeat
        r := rec.factor
        g := gcd(r, derivation r)
        if not ground? g then s := s * sqfrFactor(g, rec.exponent)
        h := (r exquo g)::UP
        if not ground? h then n := n * sqfrFactor(h, rec.exponent)
      [n, unit(q) * s]

    decompose(f, derivation) ==
      qr := divide(numer f, denom f)
-- rec.normal * rec.special = denom f
      rec := split(denom f, derivation)
-- eeu.coef1 * rec.normal + eeu.coef2 * rec.special = qr.remainder
-- and degree(eeu.coef1) < degree(rec.special)
-- and degree(eeu.coef2) < degree(rec.normal)
-- qr.remainder/denom(f) = eeu.coef1 / rec.special + eeu.coef2 / rec.normal
      eeu := extendedEuclidean(rec.normal, rec.special,
                               qr.remainder)::Record(coef1:UP, coef2:UP)
      [qr.quotient, eeu.coef2 / rec.normal, eeu.coef1 / rec.special]

@
\section{package INTHERTR TranscendentalHermiteIntegration}
<<package INTHERTR TranscendentalHermiteIntegration>>=
)abbrev package INTHERTR TranscendentalHermiteIntegration
++ Hermite integration, transcendental case
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 12 August 1992
++ Description: Hermite integration, transcendental case.
TranscendentalHermiteIntegration(F, UP): Exports == Implementation where
  F  : Field
  UP : UnivariatePolynomialCategory F

  N   ==> NonNegativeInteger
  RF  ==> Fraction UP
  REC ==> Record(answer:RF, lognum:UP, logden:UP)
  HER ==> Record(answer:RF, logpart:RF, specpart:RF, polypart:UP)

  Exports ==> with
    HermiteIntegrate: (RF, UP -> UP) -> HER
         ++ HermiteIntegrate(f, D) returns \spad{[g, h, s, p]}
         ++ such that \spad{f = Dg + h + s + p},
         ++ h has a squarefree denominator normal w.r.t. D,
         ++ and all the squarefree factors of the denominator of s are
         ++ special w.r.t. D. Furthermore, h and s have no polynomial parts.
         ++ D is the derivation to use on \spadtype{UP}.

  Implementation ==> add
    import MonomialExtensionTools(F, UP)

    normalHermiteIntegrate: (RF,UP->UP) -> Record(answer:RF,lognum:UP,logden:UP)

    HermiteIntegrate(f, derivation) ==
      rec := decompose(f, derivation)
      hi  := normalHermiteIntegrate(rec.normal, derivation)
      qr  := divide(hi.lognum, hi.logden)
      [hi.answer, qr.remainder / hi.logden, rec.special, qr.quotient + rec.poly]

-- Hermite Reduction on f, every squarefree factor of denom(f) is normal wrt D
-- this is really a "parallel" Hermite reduction, in the sense that
-- every multiple factor of the denominator gets reduced at each pass
-- so if the denominator is P1 P2**2 ... Pn**n, this requires O(n)
-- reduction steps instead of O(n**2), like Mack's algorithm
-- (D.Mack, On Rational Integration, Univ. of Utah C.S. Tech.Rep. UCP-38,1975)
-- returns [g, b, d] s.t. f = g' + b/d and d is squarefree and normal wrt D
    normalHermiteIntegrate(f, derivation) ==
      a := numer f
      q := denom f
      p:UP    := 0
      mult:UP := 1
      qhat := (q exquo (g0 := g := gcd(q, differentiate q)))::UP
      while positive? degree(qbar := g) repeat
        qbarhat := (qbar exquo (g := gcd(qbar, differentiate qbar)))::UP
        qtil:= - ((qhat * (derivation qbar)) exquo qbar)::UP
        bc :=
         extendedEuclidean(qtil, qbarhat, a)::Record(coef1:UP, coef2:UP)
        qr := divide(bc.coef1, qbarhat)
        a  := bc.coef2 + qtil * qr.quotient - derivation(qr.remainder)
               * (qhat exquo qbarhat)::UP
        p  := p + mult * qr.remainder
        mult:= mult * qbarhat
      [p / g0, a, qhat]

@
\section{package INTTR TranscendentalIntegration}
<<package INTTR TranscendentalIntegration>>=
)abbrev package INTTR TranscendentalIntegration
++ Risch algorithm, transcendental case
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 24 October 1995
++ Description:
++   This package provides functions for the transcendental
++   case of the Risch algorithm.
-- Internally used by the integrator
TranscendentalIntegration(F, UP): Exports == Implementation where
  F  : Field
  UP : UnivariatePolynomialCategory F

  N   ==> NonNegativeInteger
  Z   ==> Integer
  Q   ==> Fraction Z
  GP  ==> LaurentPolynomial(F, UP)
  UP2 ==> SparseUnivariatePolynomial UP
  RF  ==> Fraction UP
  UPR ==> SparseUnivariatePolynomial RF
  IR  ==> IntegrationResult RF
  LOG ==> Record(scalar:Q, coeff:UPR, logand:UPR)
  LLG ==> List Record(coeff:RF, logand:RF)
  NE  ==> Record(integrand:RF, intvar:RF)
  NL  ==> Record(mainpart:RF, limitedlogs:LLG)
  UPF ==> Record(answer:UP, a0:F)
  RFF ==> Record(answer:RF, a0:F)
  IRF ==> Record(answer:IR, a0:F)
  NLF ==> Record(answer:NL, a0:F)
  GPF ==> Record(answer:GP, a0:F)
  UPUP==> Record(elem:UP, notelem:UP)
  GPGP==> Record(elem:GP, notelem:GP)
  RFRF==> Record(elem:RF, notelem:RF)
  FF  ==> Record(ratpart:F,  coeff:F)
  FFR ==> Record(ratpart:RF, coeff:RF)
  UF  ==> Union(FF,  "failed")
  UF2 ==> Union(List F, "failed")
  REC ==> Record(ir:IR, specpart:RF, polypart:UP)
  PSOL==> Record(ans:F, right:F, sol?:Boolean)
  FAIL==> error "Sorry - cannot handle that integrand yet"

  Exports ==> with
    primintegrate  : (RF, UP -> UP, F -> UF)          -> IRF
      ++ primintegrate(f, ', foo) returns \spad{[g, a]} such that
      ++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in UP.
      ++ Argument foo is an extended integration function on F.
    expintegrate   : (RF, UP -> UP, (Z, F) -> PSOL) -> IRF
      ++ expintegrate(f, ', foo) returns \spad{[g, a]} such that
      ++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F;
      ++ Argument foo is a Risch differential equation solver on F;
    tanintegrate   : (RF, UP -> UP, (Z, F, F) -> UF2) -> IRF
      ++ tanintegrate(f, ', foo) returns \spad{[g, a]} such that
      ++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F;
      ++ Argument foo is a Risch differential system solver on F;
    primextendedint:(RF, UP -> UP, F->UF, RF) -> Union(RFF,FFR,"failed")
      ++ primextendedint(f, ', foo, g) returns either \spad{[v, c]} such that
      ++ \spad{f = v' + c g} and \spad{c' = 0}, or \spad{[v, a]} such that
      ++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in UP.
      ++ Returns "failed" if neither case can hold.
      ++ Argument foo is an extended integration function on F.
    expextendedint:(RF,UP->UP,(Z,F)->PSOL, RF) -> Union(RFF,FFR,"failed")
      ++ expextendedint(f, ', foo, g) returns either \spad{[v, c]} such that
      ++ \spad{f = v' + c g} and \spad{c' = 0}, or \spad{[v, a]} such that
      ++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F.
      ++ Returns "failed" if neither case can hold.
      ++ Argument foo is a Risch differential equation function on F.
    primlimitedint:(RF, UP -> UP, F->UF, List RF) -> Union(NLF,"failed")
      ++ primlimitedint(f, ', foo, [u1,...,un]) returns
      ++ \spad{[v, [c1,...,cn], a]} such that \spad{ci' = 0},
      ++ \spad{f = v' + a + reduce(+,[ci * ui'/ui])},
      ++ and \spad{a = 0} or \spad{a} has no integral in UP.
      ++ Returns "failed" if no such v, ci, a exist.
      ++ Argument foo is an extended integration function on F.
    explimitedint:(RF, UP->UP,(Z,F)->PSOL,List RF) -> Union(NLF,"failed")
      ++ explimitedint(f, ', foo, [u1,...,un]) returns
      ++ \spad{[v, [c1,...,cn], a]} such that \spad{ci' = 0},
      ++ \spad{f = v' + a + reduce(+,[ci * ui'/ui])},
      ++ and \spad{a = 0} or \spad{a} has no integral in F.
      ++ Returns "failed" if no such v, ci, a exist.
      ++ Argument foo is a Risch differential equation function on F.
    primextintfrac    : (RF, UP -> UP, RF)  -> Union(FFR, "failed")
      ++ primextintfrac(f, ', g) returns \spad{[v, c]} such that
      ++ \spad{f = v' + c g} and \spad{c' = 0}.
      ++ Error: if \spad{degree numer f >= degree denom f} or
      ++ if \spad{degree numer g >= degree denom g} or
      ++ if \spad{denom g} is not squarefree.
    primlimintfrac    : (RF, UP -> UP, List RF) -> Union(NL, "failed")
      ++ primlimintfrac(f, ', [u1,...,un]) returns \spad{[v, [c1,...,cn]]}
      ++ such that \spad{ci' = 0} and \spad{f = v' + +/[ci * ui'/ui]}.
      ++ Error: if \spad{degree numer f >= degree denom f}.
    primintfldpoly    : (UP, F -> UF, F)    -> Union(UP, "failed")
      ++ primintfldpoly(p, ', t') returns q such that \spad{p' = q} or
      ++ "failed" if no such q exists. Argument \spad{t'} is the derivative of
      ++ the primitive generating the extension.
    expintfldpoly     : (GP, (Z, F) -> PSOL) -> Union(GP, "failed")
      ++ expintfldpoly(p, foo) returns q such that \spad{p' = q} or
      ++ "failed" if no such q exists.
      ++ Argument foo is a Risch differential equation function on F.
    monomialIntegrate : (RF, UP -> UP) -> REC
      ++ monomialIntegrate(f, ') returns \spad{[ir, s, p]} such that
      ++ \spad{f = ir' + s + p} and all the squarefree factors of the
      ++ denominator of s are special w.r.t the derivation '.
    monomialIntPoly   : (UP, UP -> UP) -> Record(answer:UP, polypart:UP)
      ++ monomialIntPoly(p, ') returns [q, r] such that
      ++ \spad{p = q' + r} and \spad{degree(r) < degree(t')}.
      ++ Error if \spad{degree(t') < 2}.

  Implementation ==> add
    import SubResultantPackage(UP, UP2)
    import MonomialExtensionTools(F, UP)
    import TranscendentalHermiteIntegration(F, UP)
    import CommuteUnivariatePolynomialCategory(F, UP, UP2)

    primintegratepoly  : (UP, F -> UF, F) -> Union(UPF, UPUP)
    expintegratepoly   : (GP, (Z, F) -> PSOL) -> Union(GPF, GPGP)
    expextintfrac      : (RF, UP -> UP, RF) -> Union(FFR, "failed")
    explimintfrac      : (RF, UP -> UP, List RF) -> Union(NL, "failed")
    limitedLogs        : (RF, RF -> RF, List RF) -> Union(LLG, "failed")
    logprmderiv        : (RF, UP -> UP)    -> RF
    logexpderiv        : (RF, UP -> UP, F) -> RF
    tanintegratespecial: (RF, RF -> RF, (Z, F, F) -> UF2) -> Union(RFF, RFRF)
    UP2UP2             : UP -> UP2
    UP2UPR             : UP -> UPR
    UP22UPR            : UP2 -> UPR
    notelementary      : REC -> IR
    kappa              : (UP, UP -> UP) -> UP

    dummy:RF := 0

    logprmderiv(f, derivation) == differentiate(f, derivation) / f

    UP2UP2 p ==
      map(#1::UP, p)$UnivariatePolynomialCategoryFunctions2(F, UP, UP, UP2)

    UP2UPR p ==
      map(#1::UP::RF, p)$UnivariatePolynomialCategoryFunctions2(F, UP, RF, UPR)

    UP22UPR p == map(#1::RF, p)$SparseUnivariatePolynomialFunctions2(UP, RF)

-- given p in k[z] and a derivation on k[t] returns the coefficient lifting
-- in k[z] of the restriction of D to k.
    kappa(p, derivation) ==
      ans:UP := 0
      while p ~= 0 repeat
        ans := ans + derivation(leadingCoefficient(p)::UP)*monomial(1,degree p)
        p := reductum p
      ans

-- works in any monomial extension
    monomialIntegrate(f, derivation) ==
      zero? f => [0, 0, 0]
      r := HermiteIntegrate(f, derivation)
      zero?(inum := numer(r.logpart)) => [r.answer::IR, r.specpart, r.polypart]
      iden  := denom(r.logpart)
      x := monomial(1, 1)$UP
      resultvec := subresultantVector(UP2UP2 inum -
                                 (x::UP2) * UP2UP2 derivation iden, UP2UP2 iden)
      respoly := primitivePart leadingCoefficient resultvec 0
      rec := splitSquarefree(respoly, kappa(#1, derivation))
      logs:List(LOG) := [
              [1, UP2UPR(term.factor),
               UP22UPR swap primitivePart(resultvec(term.exponent),term.factor)]
                     for term in factors(rec.special)]
      dlog :=
           one? derivation x => r.logpart
           differentiate(mkAnswer(0, logs, empty()),
                         differentiate(#1, derivation))
      (u := retractIfCan(p := r.logpart - dlog)@Union(UP, "failed")) case UP =>
        [mkAnswer(r.answer, logs, empty()), r.specpart, r.polypart + u::UP]
      [mkAnswer(r.answer, logs, [[p, dummy]]), r.specpart, r.polypart]

-- returns [q, r] such that p = q' + r and degree(r) < degree(dt)
-- must have degree(derivation t) >= 2
    monomialIntPoly(p, derivation) ==
      (d := degree(dt := derivation monomial(1,1))::Z) < 2 =>
        error "monomIntPoly: monomial must have degree 2 or more"
      l := leadingCoefficient dt
      ans:UP := 0
      while positive?(n := 1 + degree(p)::Z - d) repeat
        ans := ans + (term := monomial(leadingCoefficient(p) / (n * l), n::N))
        p   := p - derivation term      -- degree(p) must drop here
      [ans, p]

-- returns either
--   (q in GP, a in F)  st p = q' + a, and a=0 or a has no integral in F
-- or (q in GP, r in GP) st p = q' + r, and r has no integral elem/UP
    expintegratepoly(p, FRDE) ==
      coef0:F := 0
      notelm := answr := 0$GP
      while p ~= 0 repeat
        ans1 := FRDE(n := degree p, a := leadingCoefficient p)
        answr := answr + monomial(ans1.ans, n)
        if ~ans1.sol? then         -- Risch d.e. has no complete solution
               missing := a - ans1.right
               if zero? n then coef0 := missing
                          else notelm := notelm + monomial(missing, n)
        p   := reductum p
      zero? notelm => [answr, coef0]
      [answr, notelm]

-- f is either 0 or of the form p(t)/(1 + t**2)**n
-- returns either
--   (q in RF, a in F)  st f = q' + a, and a=0 or a has no integral in F
-- or (q in RF, r in RF) st f = q' + r, and r has no integral elem/UP
    tanintegratespecial(f, derivation, FRDE) ==
      ans:RF := 0
      p := monomial(1, 2)$UP + 1
      while (n := degree(denom f) quo 2) ~= 0 repeat
        r := numer(f) rem p
        a := coefficient(r, 1)
        b := coefficient(r, 0)
        (u := FRDE(n, a, b)) case "failed" => return [ans, f]
        l := u::List(F)
        term:RF := (monomial(first l, 1)$UP + second(l)::UP) / denom f
        ans := ans + term
        f   := f - derivation term    -- the order of the pole at 1+t^2 drops
      zero?(c0 := retract(retract(f)@UP)@F) or
        (u := FRDE(0, c0, 0)) case "failed" => [ans, c0]
      [ans + first(u::List(F))::UP::RF, 0::F]

-- returns (v in RF, c in RF) s.t. f = v' + cg, and c' = 0, or "failed"
-- g must have a squarefree denominator (always possible)
-- g must have no polynomial part and no pole above t = 0
-- f must have no polynomial part and no pole above t = 0
    expextintfrac(f, derivation, g) ==
      zero? f => [0, 0]
      degree numer f >= degree denom f => error "Not a proper fraction"
      order(denom f,monomial(1,1)) ~= 0 => error "Not integral at t = 0"
      r := HermiteIntegrate(f, derivation)
      zero? g =>
        r.logpart ~= 0 => "failed"
        [r.answer, 0]
      degree numer g >= degree denom g => error "Not a proper fraction"
      order(denom g,monomial(1,1)) ~= 0 => error "Not integral at t = 0"
      differentiate(c := r.logpart / g, derivation) ~= 0 => "failed"
      [r.answer, c]

    limitedLogs(f, logderiv, lu) ==
      zero? f => empty()
      empty? lu => "failed"
      empty? rest lu =>
        logderiv(c0 := f / logderiv(u0 := first lu)) ~= 0 => "failed"
        [[c0, u0]]
      num := numer f
      den := denom f
      l1:List Record(logand2:RF, contrib:UP) :=
        [[u, numer v] for u in lu | one? denom(v := den * logderiv u)]
      rows := max(degree den,
                  1 + reduce(max, [degree(u.contrib) for u in l1], 0)$List(N))
      m:Matrix(F) := zero(rows, cols := 1 + #l1)
      for i in 0..rows-1 repeat
        for pp in l1 for j in minColIndex m .. maxColIndex m - 1 repeat
          qsetelt!(m, i + minRowIndex m, j, coefficient(pp.contrib, i))
        qsetelt!(m,i+minRowIndex m, maxColIndex m, coefficient(num, i))
      m := rowEchelon m
      ans := empty()$LLG
      for i in minRowIndex m .. maxRowIndex m |
       qelt(m, i, maxColIndex m) ~= 0 repeat
        OK := false
        for pp in l1 for j in minColIndex m .. maxColIndex m - 1
         while not OK repeat
          if qelt(m, i, j) ~= 0 then
            OK := true
            c := qelt(m, i, maxColIndex m) / qelt(m, i, j)
            logderiv(c0 := c::UP::RF) ~= 0 => return "failed"
            ans := concat([c0, pp.logand2], ans)
        not OK => return "failed"
      ans

-- returns q in UP s.t. p = q', or "failed"
    primintfldpoly(p, extendedint, t') ==
      (u := primintegratepoly(p, extendedint, t')) case UPUP => "failed"
      u.a0 ~= 0 => "failed"
      u.answer

-- returns q in GP st p = q', or "failed"
    expintfldpoly(p, FRDE) ==
      (u := expintegratepoly(p, FRDE)) case GPGP => "failed"
      u.a0 ~= 0 => "failed"
      u.answer

-- returns (v in RF, c1...cn in RF, a in F) s.t. ci' = 0,
-- and f = v' + a + +/[ci * ui'/ui]
--                                  and a = 0 or a has no integral in UP
    primlimitedint(f, derivation, extendedint, lu) ==
      qr := divide(numer f, denom f)
      (u1 := primlimintfrac(qr.remainder / (denom f), derivation, lu))
        case "failed" => "failed"
      (u2 := primintegratepoly(qr.quotient, extendedint,
               retract derivation monomial(1, 1))) case UPUP => "failed"
      [[u1.mainpart + u2.answer::RF, u1.limitedlogs], u2.a0]

-- returns (v in RF, c1...cn in RF, a in F) s.t. ci' = 0,
-- and f = v' + a + +/[ci * ui'/ui]
--                                   and a = 0 or a has no integral in F
    explimitedint(f, derivation, FRDE, lu) ==
      qr := separate(f)$GP
      (u1 := explimintfrac(qr.fracPart,derivation, lu)) case "failed" =>
                                                                "failed"
      (u2 := expintegratepoly(qr.polyPart, FRDE)) case GPGP => "failed"
      [[u1.mainpart + convert(u2.answer)@RF, u1.limitedlogs], u2.a0]

-- returns [v, c1...cn] s.t. f = v' + +/[ci * ui'/ui]
-- f must have no polynomial part (degree numer f < degree denom f)
    primlimintfrac(f, derivation, lu) ==
      zero? f => [0, empty()]
      degree numer f >= degree denom f => error "Not a proper fraction"
      r := HermiteIntegrate(f, derivation)
      zero?(r.logpart) => [r.answer, empty()]
      (u := limitedLogs(r.logpart, logprmderiv(#1, derivation), lu))
        case "failed" => "failed"
      [r.answer, u::LLG]

-- returns [v, c1...cn] s.t. f = v' + +/[ci * ui'/ui]
-- f must have no polynomial part (degree numer f < degree denom f)
-- f must be integral above t = 0
    explimintfrac(f, derivation, lu) ==
      zero? f => [0, empty()]
      degree numer f >= degree denom f => error "Not a proper fraction"
      positive? order(denom f, monomial(1,1)) => error "Not integral at t = 0"
      r  := HermiteIntegrate(f, derivation)
      zero?(r.logpart) => [r.answer, empty()]
      eta' := coefficient(derivation monomial(1, 1), 1)
      (u := limitedLogs(r.logpart, logexpderiv(#1,derivation,eta'), lu))
        case "failed" => "failed"
      [r.answer - eta'::UP *
        +/[((degree numer(v.logand))::Z - (degree denom(v.logand))::Z) *
                                            v.coeff for v in u], u::LLG]

    logexpderiv(f, derivation, eta') ==
      (differentiate(f, derivation) / f) -
            (((degree numer f)::Z - (degree denom f)::Z) * eta')::UP::RF

    notelementary rec ==
      rec.ir + integral(rec.polypart::RF + rec.specpart, monomial(1,1)$UP :: RF)

-- returns
--   (g in IR, a in F)  st f = g'+ a, and a=0 or a has no integral in UP
    primintegrate(f, derivation, extendedint) ==
      rec := monomialIntegrate(f, derivation)
      not elem?(i1 := rec.ir) => [notelementary rec, 0]
      (u2 := primintegratepoly(rec.polypart, extendedint,
                        retract derivation monomial(1, 1))) case UPUP =>
             [i1 + u2.elem::RF::IR
                 + integral(u2.notelem::RF, monomial(1,1)$UP :: RF), 0]
      [i1 + u2.answer::RF::IR, u2.a0]

-- returns
--   (g in IR, a in F)  st f = g' + a, and a = 0 or a has no integral in F
    expintegrate(f, derivation, FRDE) ==
      rec := monomialIntegrate(f, derivation)
      not elem?(i1 := rec.ir) => [notelementary rec, 0]
-- rec.specpart is either 0 or of the form p(t)/t**n
      special := rec.polypart::GP +
                   (numer(rec.specpart)::GP exquo denom(rec.specpart)::GP)::GP
      (u2 := expintegratepoly(special, FRDE)) case GPGP =>
        [i1 + convert(u2.elem)@RF::IR + integral(convert(u2.notelem)@RF,
                                                 monomial(1,1)$UP :: RF), 0]
      [i1 + convert(u2.answer)@RF::IR, u2.a0]

-- returns
--   (g in IR, a in F)  st f = g' + a, and a = 0 or a has no integral in F
    tanintegrate(f, derivation, FRDE) ==
      rec := monomialIntegrate(f, derivation)
      not elem?(i1 := rec.ir) => [notelementary rec, 0]
      r := monomialIntPoly(rec.polypart, derivation)
      t := monomial(1, 1)$UP
      c := coefficient(r.polypart, 1) / leadingCoefficient(derivation t)
      derivation(c::UP) ~= 0 =>
        [i1 + mkAnswer(r.answer::RF, empty(),
                       [[r.polypart::RF + rec.specpart, dummy]$NE]), 0]
      logs:List(LOG) :=
         zero? c => empty()
         [[1, monomial(1,1)$UPR - (c/(2::F))::UP::RF::UPR, (1 + t**2)::RF::UPR]]
      c0 := coefficient(r.polypart, 0)
      (u := tanintegratespecial(rec.specpart, differentiate(#1, derivation),
       FRDE)) case RFRF =>
        [i1 + mkAnswer(r.answer::RF + u.elem, logs, [[u.notelem,dummy]$NE]), c0]
      [i1 + mkAnswer(r.answer::RF + u.answer, logs, empty()), u.a0 + c0]

-- returns either (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
--             or (v in RF, a in F)  s.t. f = v' + a
--                                  and a = 0 or a has no integral in UP
    primextendedint(f, derivation, extendedint, g) ==
      fqr := divide(numer f, denom f)
      gqr := divide(numer g, denom g)
      (u1 := primextintfrac(fqr.remainder / (denom f), derivation,
                   gqr.remainder / (denom g))) case "failed" => "failed"
      zero?(gqr.remainder) =>
      -- the following FAIL cannot occur if the primitives are all logs
         positive? degree(gqr.quotient) => FAIL
         (u3 := primintegratepoly(fqr.quotient, extendedint,
               retract derivation monomial(1, 1))) case UPUP => "failed"
         [u1.ratpart + u3.answer::RF, u3.a0]
      (u2 := primintfldpoly(fqr.quotient - retract(u1.coeff)@UP *
        gqr.quotient, extendedint, retract derivation monomial(1, 1)))
          case "failed" => "failed"
      [u2::UP::RF + u1.ratpart, u1.coeff]

-- returns either (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
--             or (v in RF, a in F)  s.t. f = v' + a
--                                   and a = 0 or a has no integral in F
    expextendedint(f, derivation, FRDE, g) ==
      qf := separate(f)$GP
      qg := separate g
      (u1 := expextintfrac(qf.fracPart, derivation, qg.fracPart))
         case "failed" => "failed"
      zero?(qg.fracPart) =>
      --the following FAIL's cannot occur if the primitives are all logs
        retractIfCan(qg.polyPart)@Union(F,"failed") case "failed"=> FAIL
        (u3 := expintegratepoly(qf.polyPart,FRDE)) case GPGP => "failed"
        [u1.ratpart + convert(u3.answer)@RF, u3.a0]
      (u2 := expintfldpoly(qf.polyPart - retract(u1.coeff)@UP :: GP
        * qg.polyPart, FRDE)) case "failed" => "failed"
      [convert(u2::GP)@RF + u1.ratpart, u1.coeff]

-- returns either
--   (q in UP, a in F)  st p = q'+ a, and a=0 or a has no integral in UP
-- or (q in UP, r in UP) st p = q'+ r, and r has no integral elem/UP
    primintegratepoly(p, extendedint, t') ==
      zero? p => [0, 0$F]
      ans:UP := 0
      while positive?(d := degree p) repeat
        (ans1 := extendedint leadingCoefficient p) case "failed" =>
          return([ans, p])
        p   := reductum p - monomial(d * t' * ans1.ratpart, (d - 1)::N)
        ans := ans + monomial(ans1.ratpart, d)
                              + monomial(ans1.coeff / (d + 1)::F, d + 1)
      (ans1:= extendedint(rp := retract(p)@F)) case "failed" => [ans,rp]
      [monomial(ans1.coeff, 1) + ans1.ratpart::UP + ans, 0$F]

-- returns (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
-- g must have a squarefree denominator (always possible)
-- g must have no polynomial part (degree numer g < degree denom g)
-- f must have no polynomial part (degree numer f < degree denom f)
    primextintfrac(f, derivation, g) ==
      zero? f => [0, 0]
      degree numer f >= degree denom f => error "Not a proper fraction"
      r := HermiteIntegrate(f, derivation)
      zero? g =>
        r.logpart ~= 0 => "failed"
        [r.answer, 0]
      degree numer g >= degree denom g => error "Not a proper fraction"
      differentiate(c := r.logpart / g, derivation) ~= 0 => "failed"
      [r.answer, c]

@
\section{package INTRAT RationalIntegration}
<<package INTRAT RationalIntegration>>=
)abbrev package INTRAT RationalIntegration
++ Rational function integration
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 24 October 1995
++ Description:
++   This package provides functions for the base
++   case of the Risch algorithm.
-- Used internally bt the integration packages
RationalIntegration(F, UP): Exports == Implementation where
  F : Join(Field, CharacteristicZero, RetractableTo Integer)
  UP: UnivariatePolynomialCategory F

  RF  ==> Fraction UP
  IR  ==> IntegrationResult RF
  LLG ==> List Record(coeff:RF, logand:RF)
  URF ==> Union(Record(ratpart:RF, coeff:RF), "failed")
  U   ==> Union(Record(mainpart:RF, limitedlogs:LLG), "failed")

  Exports ==> with
    integrate  : RF -> IR
      ++ integrate(f) returns g such that \spad{g' = f}.
    infieldint : RF -> Union(RF, "failed")
      ++ infieldint(f) returns g such that \spad{g' = f} or "failed"
      ++ if the integral of f is not a rational function.
    extendedint: (RF, RF) -> URF
       ++ extendedint(f, g) returns fractions \spad{[h, c]} such that
       ++ \spad{c' = 0} and \spad{h' = f - cg},
       ++ if \spad{(h, c)} exist, "failed" otherwise.
    limitedint : (RF, List RF) -> U
       ++ \spad{limitedint(f, [g1,...,gn])} returns
       ++ fractions \spad{[h,[[ci, gi]]]}
       ++ such that the gi's are among \spad{[g1,...,gn]}, \spad{ci' = 0}, and
       ++ \spad{(h+sum(ci log(gi)))' = f}, if possible, "failed" otherwise.

  Implementation ==> add
    import TranscendentalIntegration(F, UP)

    infieldint f ==
      rec := baseRDE(0, f)$TranscendentalRischDE(F, UP)
      rec.nosol => "failed"
      rec.ans

    integrate f ==
      rec := monomialIntegrate(f, differentiate)
      integrate(rec.polypart)::RF::IR + rec.ir

    limitedint(f, lu) ==
      quorem := divide(numer f, denom f)
      (u := primlimintfrac(quorem.remainder / (denom f), differentiate,
        lu)) case "failed" => "failed"
      [u.mainpart + integrate(quorem.quotient)::RF, u.limitedlogs]

    extendedint(f, g) ==
      fqr := divide(numer f, denom f)
      gqr := divide(numer g, denom g)
      (i1 := primextintfrac(fqr.remainder / (denom f), differentiate,
                   gqr.remainder / (denom g))) case "failed" => "failed"
      i2:=integrate(fqr.quotient-retract(i1.coeff)@UP *gqr.quotient)::RF
      [i2 + i1.ratpart, i1.coeff]

@
\section{package INTRF RationalFunctionIntegration}
<<package INTRF RationalFunctionIntegration>>=
)abbrev package INTRF RationalFunctionIntegration
++ Integration of rational functions
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 29 Mar 1990
++ Keywords: polynomial, fraction, integration.
++ Description:
++   This package provides functions for the integration
++   of rational functions.
++ Examples: )r INTRF INPUT
RationalFunctionIntegration(F): Exports == Implementation where
  F: Join(IntegralDomain, RetractableTo Integer, CharacteristicZero)

  SE  ==> Symbol
  P   ==> Polynomial F
  Q   ==> Fraction P
  UP  ==> SparseUnivariatePolynomial Q
  QF  ==> Fraction UP
  LGQ ==> List Record(coeff:Q, logand:Q)
  UQ  ==> Union(Record(ratpart:Q, coeff:Q), "failed")
  ULQ ==> Union(Record(mainpart:Q, limitedlogs:LGQ), "failed")

  Exports ==> with
    internalIntegrate: (Q, SE) -> IntegrationResult Q
       ++ internalIntegrate(f, x) returns g such that \spad{dg/dx = f}.
    infieldIntegrate : (Q, SE) -> Union(Q, "failed")
       ++ infieldIntegrate(f, x) returns a fraction
       ++ g such that \spad{dg/dx = f}
       ++ if g exists, "failed" otherwise.
    limitedIntegrate : (Q, SE, List Q) -> ULQ
       ++ \spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions
       ++ \spad{[h, [[ci,gi]]]} such that the gi's are among
       ++ \spad{[g1,...,gn]},
       ++ \spad{dci/dx = 0}, and  \spad{d(h + sum(ci log(gi)))/dx = f}
       ++ if possible, "failed" otherwise.
    extendedIntegrate: (Q, SE, Q) -> UQ
       ++ extendedIntegrate(f, x, g) returns fractions \spad{[h, c]} such that
       ++ \spad{dc/dx = 0} and \spad{dh/dx = f - cg}, if \spad{(h, c)} exist,
       ++ "failed" otherwise.

  Implementation ==> add
    import RationalIntegration(Q, UP)
    import IntegrationResultFunctions2(QF, Q)
    import PolynomialCategoryQuotientFunctions(IndexedExponents SE,
                                                       SE, F, P, Q)

    infieldIntegrate(f, x) ==
      map(multivariate(#1, x), infieldint univariate(f, x))

    internalIntegrate(f, x) ==
      map(multivariate(#1, x), integrate univariate(f, x))

    extendedIntegrate(f, x, g) ==
      map(multivariate(#1, x),
          extendedint(univariate(f, x), univariate(g, x)))

    limitedIntegrate(f, x, lu) ==
      map(multivariate(#1, x),
          limitedint(univariate(f, x), [univariate(u, x) for u in lu]))

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
-- Copyright (C) 2007-2010, Gabriel Dos Reis.
-- All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
 
-- SPAD files for the integration world should be compiled in the
-- following order:
--
--   intaux  rderf  INTRF  curve  curvepkg  divisor  pfo
--   intalg  intaf  efstruc  rdeef  intpm  intef  irexpand  integrat
 
<<package SUBRESP SubResultantPackage>>
<<package MONOTOOL MonomialExtensionTools>>
<<package INTHERTR TranscendentalHermiteIntegration>>
<<package INTTR TranscendentalIntegration>>
<<package INTRAT RationalIntegration>>
<<package INTRF RationalFunctionIntegration>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}