\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra intfact.spad}
\author{Michael Monagan}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package PRIMES IntegerPrimesPackage}
<<package PRIMES IntegerPrimesPackage>>=
)abbrev package PRIMES IntegerPrimesPackage
++ Author: Michael Monagan
++ Date Created: August 1987
++ Date Last Updated: 31 May 1993
++ Updated by: James Davenport
++ Updated Because: of problems with strong pseudo-primes
++   and for some efficiency reasons.
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: integer, prime
++ Examples:
++ References: Davenport's paper in ISSAC 1992
++             AXIOM Technical Report ATR/6
++ Description:
++   The \spadtype{IntegerPrimesPackage} implements a modification of
++   Rabin's probabilistic
++   primality test and the utility functions \spadfun{nextPrime},
++   \spadfun{prevPrime} and \spadfun{primes}.
IntegerPrimesPackage(I:IntegerNumberSystem): with
   prime?: I -> Boolean
     ++ \spad{prime?(n)} returns true if n is prime and false if not.
     ++ The algorithm used is Rabin's probabilistic primality test
     ++ (reference: Knuth Volume 2 Semi Numerical Algorithms).
     ++ If \spad{prime? n} returns false, n is proven composite.
     ++ If \spad{prime? n} returns true, prime? may be in error
     ++ however, the probability of error is very low.
     ++ and is zero below 25*10**9 (due to a result of Pomerance et al),
     ++ below 10**12 and 10**13 due to results of Pinch,
     ++ and below 341550071728321 due to a result of Jaeschke.
     ++ Specifically, this implementation does at least 10 pseudo prime
     ++ tests and so the probability of error is \spad{< 4**(-10)}.
     ++ The running time of this method is cubic in the length
     ++ of the input n, that is \spad{O( (log n)**3 )}, for n<10**20.
     ++ beyond that, the algorithm is quartic, \spad{O( (log n)**4 )}.
     ++ Two improvements due to Davenport have been incorporated
     ++ which catches some trivial strong pseudo-primes, such as
     ++ [Jaeschke, 1991] 1377161253229053 * 413148375987157, which
     ++ the original algorithm regards as prime
   nextPrime: I -> I
     ++ \spad{nextPrime(n)} returns the smallest prime strictly larger than n
   prevPrime: I -> I
     ++ \spad{prevPrime(n)} returns the largest prime strictly smaller than n
   primes: (I,I) -> List I
     ++ \spad{primes(a,b)} returns a list of all primes p with
     ++ \spad{a <= p <= b}
 == add
   smallPrimes: List I := [2::I,3::I,5::I,7::I,11::I,13::I,17::I,19::I,_
                      23::I,29::I,31::I,37::I,41::I,43::I,47::I,_
                      53::I,59::I,61::I,67::I,71::I,73::I,79::I,_
                      83::I,89::I,97::I,101::I,103::I,107::I,109::I,_
                      113::I,127::I,131::I,137::I,139::I,149::I,151::I,_
                      157::I,163::I,167::I,173::I,179::I,181::I,191::I,_
                      193::I,197::I,199::I,211::I,223::I,227::I,229::I,_
                      233::I,239::I,241::I,251::I,257::I,263::I,269::I,_
                      271::I,277::I,281::I,283::I,293::I,307::I,311::I,_
                      313::I]

   productSmallPrimes    := */smallPrimes
   nextSmallPrime        := 317::I
   nextSmallPrimeSquared := nextSmallPrime**2
   two                   := 2::I
   tenPowerTwenty:=(10::I)**20
   PomeranceList:= [25326001::I, 161304001::I, 960946321::I, 1157839381::I,
                     -- 3215031751::I, -- has a factor of 151
                     3697278427::I, 5764643587::I, 6770862367::I,
                      14386156093::I, 15579919981::I, 18459366157::I,
                       19887974881::I, 21276028621::I ]::(List I)
   PomeranceLimit:=27716349961::I  -- replaces (25*10**9) due to Pinch
   PinchList:= [3215031751::I, 118670087467::I, 128282461501::I, 354864744877::I,
                546348519181::I, 602248359169::I, 669094855201::I ]
   PinchLimit:= (10**12)::I
   PinchList2:= [2152302898747::I, 3474749660383::I]
   PinchLimit2:= (10**13)::I
   JaeschkeLimit:=341550071728321::I
   rootsMinus1:Set I := empty()
   -- used to check whether we detect too many roots of -1
   count2Order:Vector NonNegativeInteger := new(1,0)
   -- used to check whether we observe an element of maximal two-order

   primes(m, n) ==
      -- computes primes from m to n inclusive using prime?
      l:List(I) :=
        m <= two => [two]
        empty()
      n < two or n < m => empty()
      if even? m then m := m + 1
      ll:List(I) := [k::I for k in
             convert(m)@Integer..convert(n)@Integer by 2 | prime?(k::I)]
      reverse_! concat_!(ll, l)

   rabinProvesComposite : (I,I,I,I,NonNegativeInteger) -> Boolean
   rabinProvesCompositeSmall : (I,I,I,I,NonNegativeInteger) -> Boolean


   rabinProvesCompositeSmall(p,n,nm1,q,k) ==
         -- probability n prime is > 3/4 for each iteration
         -- for most n this probability is much greater than 3/4
         t := powmod(p, q, n)
         -- neither of these cases tells us anything
--         if not (one? t or t = nm1) then
         if not ((t = 1) or t = nm1) then
            for j in 1..k-1 repeat
               oldt := t
               t := mulmod(t, t, n)
--               one? t => return true
               (t = 1) => return true
               -- we have squared someting not -1 and got 1
               t = nm1 =>
                   leave
            not (t = nm1) => return true
         false

   rabinProvesComposite(p,n,nm1,q,k) ==
         -- probability n prime is > 3/4 for each iteration
         -- for most n this probability is much greater than 3/4
         t := powmod(p, q, n)
         -- neither of these cases tells us anything
         if t=nm1 then count2Order(1):=count2Order(1)+1
--         if not (one? t or t = nm1) then
         if not ((t = 1) or t = nm1) then
            for j in 1..k-1 repeat
               oldt := t
               t := mulmod(t, t, n)
--               one? t => return true
               (t = 1) => return true
               -- we have squared someting not -1 and got 1
               t = nm1 =>
                   rootsMinus1:=union(rootsMinus1,oldt)
                   count2Order(j+1):=count2Order(j+1)+1
                   leave
            not (t = nm1) => return true
         # rootsMinus1 > 2 => true  -- Z/nZ can't be a field
         false

   prime? n ==
      n < two => false
      n < nextSmallPrime => member?(n, smallPrimes)
--      not one? gcd(n, productSmallPrimes) => false
      not (gcd(n, productSmallPrimes) = 1) => false
      n < nextSmallPrimeSquared => true

      nm1 := n-1
      q := (nm1) quo two
      k : NonNegativeInteger
      for k in 1.. while not odd? q repeat q := q quo two
      -- q = (n-1) quo 2**k for largest possible k

      n < JaeschkeLimit =>
          rabinProvesCompositeSmall(2::I,n,nm1,q,k) => return false
          rabinProvesCompositeSmall(3::I,n,nm1,q,k) => return false

          n < PomeranceLimit =>
              rabinProvesCompositeSmall(5::I,n,nm1,q,k) => return false
              member?(n,PomeranceList) => return false
              true

          rabinProvesCompositeSmall(7::I,n,nm1,q,k) => return false
          n < PinchLimit =>
              rabinProvesCompositeSmall(10::I,n,nm1,q,k) => return false
              member?(n,PinchList) => return false
              true

          rabinProvesCompositeSmall(5::I,n,nm1,q,k) => return false
          rabinProvesCompositeSmall(11::I,n,nm1,q,k) => return false
          n < PinchLimit2 =>
              member?(n,PinchList2) => return false
              true

          rabinProvesCompositeSmall(13::I,n,nm1,q,k) => return false
          rabinProvesCompositeSmall(17::I,n,nm1,q,k) => return false
          true

      rootsMinus1:= empty()
      count2Order := new(k,0) -- vector of k zeroes

      mn := minIndex smallPrimes
      for i in mn+1..mn+10 repeat
          rabinProvesComposite(smallPrimes i,n,nm1,q,k) => return false
      import IntegerRoots(I)
      q > 1 and perfectSquare?(3*n+1) => false
      ((n9:=n rem (9::I))=1 or n9 = -1) and perfectSquare?(8*n+1) => false
      -- Both previous tests from Damgard & Landrock
      currPrime:=smallPrimes(mn+10)
      probablySafe:=tenPowerTwenty
      while count2Order(k) = 0 or n > probablySafe repeat
          currPrime := nextPrime currPrime
          probablySafe:=probablySafe*(100::I)
          rabinProvesComposite(currPrime,n,nm1,q,k) => return false
      true

   nextPrime n ==
      -- computes the first prime after n
      n < two => two
      if odd? n then n := n + two else n := n + 1
      while not prime? n repeat n := n + two
      n

   prevPrime n ==
      -- computes the first prime before n
      n < 3::I => error "no primes less than 2"
      n = 3::I => two
      if odd? n then n := n - two else n := n - 1
      while not prime? n repeat n := n - two
      n

@
\section{package IROOT IntegerRoots}
<<package IROOT IntegerRoots>>=
)abbrev package IROOT IntegerRoots
++ Author: Michael Monagan
++ Date Created: November 1987
++ Date Last Updated:
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: integer roots
++ Examples:
++ References:
++ Description: The \spadtype{IntegerRoots} package computes square roots and
++   nth roots of integers efficiently.
IntegerRoots(I:IntegerNumberSystem): Exports == Implementation where
  NNI ==> NonNegativeInteger

  Exports ==> with
    perfectNthPower?: (I, NNI) -> Boolean
      ++ \spad{perfectNthPower?(n,r)} returns true if n is an \spad{r}th
      ++ power and false otherwise
    perfectNthRoot: (I,NNI) -> Union(I,"failed")
      ++ \spad{perfectNthRoot(n,r)} returns the \spad{r}th root of n if n
      ++ is an \spad{r}th power and returns "failed" otherwise
    perfectNthRoot: I -> Record(base:I, exponent:NNI)
      ++ \spad{perfectNthRoot(n)} returns \spad{[x,r]}, where \spad{n = x\^r}
      ++ and r is the largest integer such that n is a perfect \spad{r}th power
    approxNthRoot: (I,NNI) -> I
      ++ \spad{approxRoot(n,r)} returns an approximation x
      ++ to \spad{n**(1/r)} such that \spad{-1 < x - n**(1/r) < 1}
    perfectSquare?: I -> Boolean
      ++ \spad{perfectSquare?(n)} returns true if n is a perfect square
      ++ and false otherwise
    perfectSqrt: I -> Union(I,"failed")
      ++ \spad{perfectSqrt(n)} returns the square root of n if n is a
      ++ perfect square and returns "failed" otherwise
    approxSqrt: I -> I
      ++ \spad{approxSqrt(n)} returns an approximation x
      ++ to \spad{sqrt(n)} such that \spad{-1 < x - sqrt(n) < 1}.
      ++ Compute an approximation s to \spad{sqrt(n)} such that
      ++           \spad{-1 < s - sqrt(n) < 1}
      ++ A variable precision Newton iteration is used.
      ++ The running time is \spad{O( log(n)**2 )}.

  Implementation ==> add
    import IntegerPrimesPackage(I)

    resMod144: List I := [0::I,1::I,4::I,9::I,16::I,25::I,36::I,49::I,_
                     52::I,64::I,73::I,81::I,97::I,100::I,112::I,121::I]
    two := 2::I


    perfectSquare? a       == (perfectSqrt a) case I
    perfectNthPower?(b, n) == perfectNthRoot(b, n) case I

    perfectNthRoot n ==  -- complexity (log log n)**2 (log n)**2
      m:NNI
--      one? n or zero? n or n = -1 => [n, 1]
      (n = 1) or zero? n or n = -1 => [n, 1]
      e:NNI := 1
      p:NNI := 2
      while p::I <= length(n) + 1 repeat
         for m in 0.. while (r := perfectNthRoot(n, p)) case I repeat
            n := r::I
         e := e * p ** m
         p := convert(nextPrime(p::I))@Integer :: NNI
      [n, e]

    approxNthRoot(a, n) ==   -- complexity (log log n) (log n)**2
      zero? n => error "invalid arguments"
--      one? n => a
      (n = 1) => a
      n=2 => approxSqrt a
      negative? a =>
        odd? n => - approxNthRoot(-a, n)
        0
      zero? a => 0
--      one? a => 1
      (a = 1) => 1
      -- quick check for case of large n
      ((3*n) quo 2)::I >= (l := length a) => two
      -- the initial approximation must be >= the root
      y := max(two, shift(1, (n::I+l-1) quo (n::I)))
      z:I := 1
      n1:= (n-1)::NNI
      x: I
      while z > 0 repeat
        x := y
        xn:= x**n1
        y := (n1*x*xn+a) quo (n*xn)
        z := x-y
      x

    perfectNthRoot(b, n) ==
      (r := approxNthRoot(b, n)) ** n = b => r
      "failed"

    perfectSqrt a ==
      a < 0 or not member?(a rem (144::I), resMod144) => "failed"
      (s := approxSqrt a) * s = a => s
      "failed"

    approxSqrt a ==
      a < 1 => 0
      if (n := length a) > (100::I) then
         -- variable precision newton iteration
         n := n quo (4::I)
         s := approxSqrt shift(a, -2 * n)
         s := shift(s, n)
         return ((1 + s + a quo s) quo two)
      -- initial approximation for the root is within a factor of 2
      (new, old) := (shift(1, n quo two), 1)
      while new ~= old repeat
         (new, old) := ((1 + new + a quo new) quo two, new)
      new

@
\section{package INTFACT IntegerFactorizationPackage}
<<package INTFACT IntegerFactorizationPackage>>=
)abbrev package INTFACT IntegerFactorizationPackage
++ This Package contains basic methods for integer factorization.
++ The factor operation employs trial division up to 10,000.  It
++ then tests to see if n is a perfect power before using Pollards
++ rho method.  Because Pollards method may fail, the result
++ of factor may contain composite factors.  We should also employ
++ Lenstra's eliptic curve method.

IntegerFactorizationPackage(I): Exports == Implementation where
  I: IntegerNumberSystem

  B      ==> Boolean
  FF     ==> Factored I
  NNI    ==> NonNegativeInteger
  LMI    ==> ListMultiDictionary I
  FFE    ==> Record(flg:Union("nil","sqfr","irred","prime"),
                                                   fctr:I, xpnt:Integer)

  Exports ==>  with
    factor : I -> FF
      ++ factor(n) returns the full factorization of integer n
    squareFree   : I -> FF
      ++ squareFree(n) returns the square free factorization of integer n
    BasicMethod : I -> FF
      ++ BasicMethod(n) returns the factorization
      ++ of integer n by trial division
    PollardSmallFactor: I -> Union(I,"failed")
       ++ PollardSmallFactor(n) returns a factor
       ++ of n or "failed" if no one is found

  Implementation ==> add
    import IntegerRoots(I)

    BasicSieve: (I, I) -> FF

    squareFree(n:I):FF ==
       u:I
       if n<0 then (m := -n; u := -1)
              else (m := n; u := 1)
       (m > 1) and ((v := perfectSqrt m) case I) =>
          sv : FF
          l : List FFE
          for rec in (l := factorList(sv := squareFree(v::I))) repeat
            rec.xpnt := 2 * rec.xpnt
          makeFR(u * unit sv, l)
    -- avoid using basic sieve when the lim is too big
       lim := 1 + approxNthRoot(m,3)
       lim > (100000::I) => makeFR(u, factorList factor m)
       x := BasicSieve(m, lim)
       y :=
--         one?(m:= unit x) => factorList x
         ((m:= unit x) = 1) => factorList x
         (v := perfectSqrt m) case I => 
            concat_!(factorList x, ["sqfr",v,2]$FFE)
         concat_!(factorList x, ["sqfr",m,1]$FFE)
       makeFR(u, y)

    -- Pfun(y: I,n: I): I == (y**2 + 5) rem n
    PollardSmallFactor(n:I):Union(I,"failed") ==
       -- Use the Brent variation
       x0 := random()$I
       m := 100::I
       y := x0 rem n
       r:I := 1
       q:I := 1
       G:I := 1
       ys: I
       x: I
       until G > 1 repeat
          x := y
          k: I
          for i in 1..convert(r)@Integer repeat
             y := (y*y+5::I) rem n
             q := (q*abs(x-y)) rem n
             k := 0
          until (k>=r) or (G>1) repeat
             ys := y
             for i in 1..convert(min(m,r-k))@Integer repeat
                y := (y*y+5::I) rem n
                q := q*abs(x-y) rem n
             G := gcd(q,n)
             k := k+m
          r := 2*r
       if G=n then
          until G>1 repeat
             ys := (ys*ys+5::I) rem n
             G := gcd(abs(x-ys),n)
       G=n => "failed"
       G

    BasicSieve(r, lim) ==
       l:List(I) :=
          [1::I,2::I,2::I,4::I,2::I,4::I,2::I,4::I,6::I,2::I,6::I]
       concat_!(l, rest(l, 3))
       d := 2::I
       n := r
       ls := empty()$List(FFE)
       for s in l repeat
          d > lim => return makeFR(n, ls)
          if n<d*d then
             if n>1 then ls := concat_!(ls, ["prime",n,1]$FFE)
             return makeFR(1, ls)
          m : Integer
          for m in 0.. while zero?(n rem d) repeat n := n quo d
          if m>0 then ls := concat_!(ls, ["prime",d,convert m]$FFE)
          d := d+s

    BasicMethod n ==
       u:I
       if n<0 then (m := -n; u := -1)
              else (m := n; u := 1)
       x := BasicSieve(m, 1 + approxSqrt m)
       makeFR(u, factorList x)

    factor m ==
       u:I
       zero? m => 0
       if negative? m then (n := -m; u := -1)
                      else (n := m; u := 1)
       b := BasicSieve(n, 10000::I)
       flb := factorList b
--       one?(n := unit b) => makeFR(u, flb)
       ((n := unit b) = 1) => makeFR(u, flb)
       a:LMI := dictionary() -- numbers yet to be factored
       b:LMI := dictionary() -- prime factors found
       f:LMI := dictionary() -- number which could not be factored
       insert_!(n, a)
       while not empty? a repeat
          n := inspect a; 
          c := count(n, a); 
          remove_!(n, a)
          prime?(n)$IntegerPrimesPackage(I) => insert_!(n, b, c)
          -- test for a perfect power
          (s := perfectNthRoot n).exponent > 1 =>
            insert_!(s.base, a, c * s.exponent)
          -- test for a difference of square
          x:=approxSqrt n;
          if (x**2<n) then x:=x+1
          (y:=perfectSqrt (x**2-n)) case I =>
                insert_!(x+y,a,c)
                insert_!(x-y,a,c)
          (d := PollardSmallFactor n) case I =>
             m' : NonNegativeInteger
             for m' in 0.. while zero?(n rem d) repeat n := n quo d
             insert_!(d, a, m' * c)
             if n > 1 then insert_!(n, a, c)
          -- an elliptic curve factorization attempt should be made here
          insert_!(n, f, c)
       -- insert prime factors found
       while not empty? b repeat
          n := inspect b; c := count(n, b); remove_!(n, b)
          flb := concat_!(flb, ["prime",n,convert c]$FFE)
       -- insert non-prime factors found
       while not empty? f repeat
          n := inspect f; c := count(n, f); remove_!(n, f)
          flb := concat_!(flb, ["nil",n,convert c]$FFE)
       makeFR(u, flb)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package PRIMES IntegerPrimesPackage>>
<<package IROOT IntegerRoots>>
<<package INTFACT IntegerFactorizationPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}