\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra interval.spad} \author{Mike Dewar} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category INTCAT IntervalCategory} <<category INTCAT IntervalCategory>>= )abbrev category INTCAT IntervalCategory +++ Author: Mike Dewar +++ Date Created: November 1996 +++ Date Last Updated: +++ Basic Functions: +++ Related Constructors: +++ Also See: +++ AMS Classifications: +++ Keywords: +++ References: +++ Description: +++ This category implements of interval arithmetic and transcendental +++ functions over intervals. IntervalCategory(R: Join(FloatingPointSystem,TranscendentalFunctionCategory)): Category == Join(GcdDomain, OrderedSet, TranscendentalFunctionCategory, RadicalCategory, RetractableTo(Integer)) with approximate interval : (R,R) -> % ++ interval(inf,sup) creates a new interval, either \axiom{[inf,sup]} if ++ \axiom{inf <= sup} or \axiom{[sup,in]} otherwise. qinterval : (R,R) -> % ++ qinterval(inf,sup) creates a new interval \axiom{[inf,sup]}, without ++ checking the ordering on the elements. interval : R -> % ++ interval(f) creates a new interval around f. interval : Fraction Integer -> % ++ interval(f) creates a new interval around f. inf : % -> R ++ inf(u) returns the infinum of \axiom{u}. sup : % -> R ++ sup(u) returns the supremum of \axiom{u}. width : % -> R ++ width(u) returns \axiom{sup(u) - inf(u)}. positive? : % -> Boolean ++ positive?(u) returns \axiom{true} if every element of u is positive, ++ \axiom{false} otherwise. negative? : % -> Boolean ++ negative?(u) returns \axiom{true} if every element of u is negative, ++ \axiom{false} otherwise. contains? : (%,R) -> Boolean ++ contains?(i,f) returns true if \axiom{f} is contained within the interval ++ \axiom{i}, false otherwise. @ \section{domain INTRVL Interval} <<domain INTRVL Interval>>= )abbrev domain INTRVL Interval +++ Author: Mike Dewar +++ Date Created: November 1996 +++ Date Last Updated: +++ Basic Functions: +++ Related Constructors: +++ Also See: +++ AMS Classifications: +++ Keywords: +++ References: +++ Description: +++ This domain is an implementation of interval arithmetic and transcendental +++ functions over intervals. Interval(R:Join(FloatingPointSystem,TranscendentalFunctionCategory)): IntervalCategory(R) == add import Integer -- import from R Rep := Record(Inf:R, Sup:R) roundDown(u:R):R == if zero?(u) then float(-1,-(bits() pretend Integer)) else float(mantissa(u) - 1,exponent(u)) roundUp(u:R):R == if zero?(u) then float(1, -(bits()) pretend Integer) else float(mantissa(u) + 1,exponent(u)) -- Sometimes the float representation does not use all the bits (e.g. when -- representing an integer in software using arbitrary-length Integers as -- your mantissa it is convenient to keep them exact). This function -- normalises things so that rounding etc. works as expected. It is only -- called when creating new intervals. normaliseFloat(u:R):R == zero? u => u m : Integer := mantissa u b : Integer := bits() pretend Integer l : Integer := length(m) if l < b then BASE : Integer := base()$R pretend Integer float(m*BASE**((b-l) pretend PositiveInteger),exponent(u)-b+l) else u interval(i:R,s:R):% == i > s => [roundDown normaliseFloat s,roundUp normaliseFloat i] [roundDown normaliseFloat i,roundUp normaliseFloat s] interval(f:R):% == zero?(f) => 0 one?(f) => 1 -- This next part is necessary to allow e.g. mapping between Expressions: -- AXIOM assumes that Integers stay as Integers! -- import from Union(value1:Integer,failed:"failed") fnew : R := normaliseFloat f retractIfCan(f)@Union(Integer,"failed") case "failed" => [roundDown fnew, roundUp fnew] [fnew,fnew] qinterval(i:R,s:R):% == [roundDown normaliseFloat i,roundUp normaliseFloat s] exactInterval(i:R,s:R):% == [i,s] exactSupInterval(i:R,s:R):% == [roundDown i,s] exactInfInterval(i:R,s:R):% == [i,roundUp s] inf(u:%):R == u.Inf sup(u:%):R == u.Sup width(u:%):R == u.Sup - u.Inf contains?(u:%,f:R):Boolean == (f > inf(u)) and (f < sup(u)) positive?(u:%):Boolean == inf(u) > 0 negative?(u:%):Boolean == sup(u) < 0 a:% < b:% == if inf(a) < inf(b) then true else if inf(a) > inf(b) then false else sup(a) < sup(b) a:% + b:% == -- A couple of blatent hacks to preserve the Ring Axioms! if zero?(a) then return(b) else if zero?(b) then return(a) if a = b then return qinterval(2*inf(a),2*sup(a)) qinterval(inf(a) + inf(b), sup(a) + sup(b)) a:% - b:% == if zero?(a) then return(-b) else if zero?(b) then return(a) if a = b then 0 else qinterval(inf(a) - sup(b), sup(a) - inf(b)) a:% * b:% == -- A couple of blatent hacks to preserve the Ring Axioms! if one?(a) then return(b) else if one?(b) then return(a) if zero?(a) then return(0) else if zero?(b) then return(0) prods : List R := sort [inf(a)*inf(b),sup(a)*sup(b), inf(a)*sup(b),sup(a)*inf(b)] qinterval(first prods, last prods) a:Integer * b:% == if (a > 0) then qinterval(a*inf(b),a*sup(b)) else if (a < 0) then qinterval(a*sup(b),a*inf(b)) else 0 a:PositiveInteger * b:% == qinterval(a*inf(b),a*sup(b)) a:% ** n:PositiveInteger == contains?(a,0) and zero?((n pretend Integer) rem 2) => interval(0,max(inf(a)**n,sup(a)**n)) interval(inf(a)**n,sup(a)**n) -(a:%) == exactInterval(-sup(a),-inf(a)) a:% = b:% == (inf(a)=inf(b)) and (sup(a)=sup(b)) a:% ~= b:% == (inf(a)~=inf(b)) or (sup(a)~=sup(b)) 1 == one : R := normaliseFloat 1 [one,one] 0 == [0,0] recip(u:%):Union(%,"failed") == contains?(u,0) => "failed" vals:List R := sort [1/inf(u),1/sup(u)]$List(R) qinterval(first vals, last vals) unit?(u:%):Boolean == contains?(u,0) (u:% exquo v:%): Union(%,"failed") == contains?(v,0) => "failed" one?(v) => u u=v => 1 u=-v => -1 vals:List R := sort [inf(u)/inf(v),inf(u)/sup(v),sup(u)/inf(v),sup(u)/sup(v)]$List(R) qinterval(first vals, last vals) gcd(u:%,v:%):% == 1 coerce(u:Integer):% == ur := normaliseFloat(u::R) exactInterval(ur,ur) interval(u:Fraction Integer):% == -- import log2 : % -> % -- coerce : Integer -> % -- retractIfCan : % -> Union(value1:Integer,failed:"failed") -- from Float flt := u::R -- Test if the representation in R is exact --den := denom(u)::Float bin : Union(Integer,"failed") := retractIfCan(log2(denom(u)::Float)) bin case Integer and length(numer u)$Integer < (bits() pretend Integer) => flt := normaliseFloat flt exactInterval(flt,flt) qinterval(flt,flt) retractIfCan(u:%):Union(Integer,"failed") == not zero? width(u) => "failed" retractIfCan inf u retract(u:%):Integer == not zero? width(u) => error "attempt to retract a non-Integer interval to an Integer" retract inf u coerce(u:%):OutputForm == bracket([coerce inf(u), coerce sup(u)]$List(OutputForm)) characteristic:NonNegativeInteger == 0 -- Explicit export from TranscendentalFunctionCategory pi():% == qinterval(pi(),pi()) -- From ElementaryFunctionCategory log(u:%):% == positive?(u) => qinterval(log inf u, log sup u) error "negative logs in interval" exp(u:%):% == qinterval(exp inf u, exp sup u) u:% ** v:% == zero?(v) => if zero?(u) then error "0**0 is undefined" else 1 one?(u) => 1 expts : List R := sort [inf(u)**inf(v),sup(u)**sup(v), inf(u)**sup(v),sup(u)**inf(v)] qinterval(first expts, last expts) -- From TrigonometricFunctionCategory -- This function checks whether an interval contains a value of the form -- `offset + 2 n pi'. hasTwoPiMultiple(offset:R,ipi:R,i:%):Boolean == next : Integer := retract ceiling( (inf(i) - offset)/(2*ipi) ) contains?(i,offset+2*next*ipi) -- This function checks whether an interval contains a value of the form -- `offset + n pi'. hasPiMultiple(offset:R,ipi:R,i:%):Boolean == next : Integer := retract ceiling( (inf(i) - offset)/ipi ) contains?(i,offset+next*ipi) sin(u:%):% == ipi : R := pi()$R hasOne? : Boolean := hasTwoPiMultiple(ipi/(2::R),ipi,u) hasMinusOne? : Boolean := hasTwoPiMultiple(3*ipi/(2::R),ipi,u) if hasOne? and hasMinusOne? then exactInterval(-1,1) else vals : List R := sort [sin inf u, sin sup u] if hasOne? then exactSupInterval(first vals, 1) else if hasMinusOne? then exactInfInterval(-1,last vals) else qinterval(first vals, last vals) cos(u:%):% == ipi : R := pi() hasOne? : Boolean := hasTwoPiMultiple(0,ipi,u) hasMinusOne? : Boolean := hasTwoPiMultiple(ipi,ipi,u) if hasOne? and hasMinusOne? then exactInterval(-1,1) else vals : List R := sort [cos inf u, cos sup u] if hasOne? then exactSupInterval(first vals, 1) else if hasMinusOne? then exactInfInterval(-1,last vals) else qinterval(first vals, last vals) tan(u:%):% == ipi : R := pi() if width(u) > ipi then error "Interval contains a singularity" else -- Since we know the interval is less than pi wide, monotonicity implies -- that there is no singularity. If there is a singularity on a endpoint -- of the interval the user will see the error generated by R. lo : R := tan inf u hi : R := tan sup u lo > hi => error "Interval contains a singularity" qinterval(lo,hi) csc(u:%):% == ipi : R := pi() if width(u) > ipi then error "Interval contains a singularity" else -- import from Integer -- singularities are at multiples of Pi if hasPiMultiple(0,ipi,u) then error "Interval contains a singularity" vals : List R := sort [csc inf u, csc sup u] if hasTwoPiMultiple(ipi/(2::R),ipi,u) then exactInfInterval(1,last vals) else if hasTwoPiMultiple(3*ipi/(2::R),ipi,u) then exactSupInterval(first vals,-1) else qinterval(first vals, last vals) sec(u:%):% == ipi : R := pi() if width(u) > ipi then error "Interval contains a singularity" else -- import from Integer -- singularities are at Pi/2 + n Pi if hasPiMultiple(ipi/(2::R),ipi,u) then error "Interval contains a singularity" vals : List R := sort [sec inf u, sec sup u] if hasTwoPiMultiple(0,ipi,u) then exactInfInterval(1,last vals) else if hasTwoPiMultiple(ipi,ipi,u) then exactSupInterval(first vals,-1) else qinterval(first vals, last vals) cot(u:%):% == ipi : R := pi() if width(u) > ipi then error "Interval contains a singularity" else -- Since we know the interval is less than pi wide, monotonicity implies -- that there is no singularity. If there is a singularity on a endpoint -- of the interval the user will see the error generated by R. hi : R := cot inf u lo : R := cot sup u lo > hi => error "Interval contains a singularity" qinterval(lo,hi) -- From ArcTrigonometricFunctionCategory asin(u:%):% == lo : R := inf(u) hi : R := sup(u) if (lo < -1) or (hi > 1) then error "asin only defined on the region -1..1" qinterval(asin lo,asin hi) acos(u:%):% == lo : R := inf(u) hi : R := sup(u) if (lo < -1) or (hi > 1) then error "acos only defined on the region -1..1" qinterval(acos hi,acos lo) atan(u:%):% == qinterval(atan inf u, atan sup u) acot(u:%):% == qinterval(acot sup u, acot inf u) acsc(u:%):% == lo : R := inf(u) hi : R := sup(u) if ((lo <= -1) and (hi >= -1)) or ((lo <= 1) and (hi >= 1)) then error "acsc not defined on the region -1..1" qinterval(acsc hi, acsc lo) asec(u:%):% == lo : R := inf(u) hi : R := sup(u) if ((lo < -1) and (hi > -1)) or ((lo < 1) and (hi > 1)) then error "asec not defined on the region -1..1" qinterval(asec lo, asec hi) -- From HyperbolicFunctionCategory tanh(u:%):% == qinterval(tanh inf u, tanh sup u) sinh(u:%):% == qinterval(sinh inf u, sinh sup u) sech(u:%):% == negative? u => qinterval(sech inf u, sech sup u) positive? u => qinterval(sech sup u, sech inf u) vals : List R := sort [sech inf u, sech sup u] exactSupInterval(first vals,1) cosh(u:%):% == negative? u => qinterval(cosh sup u, cosh inf u) positive? u => qinterval(cosh inf u, cosh sup u) vals : List R := sort [cosh inf u, cosh sup u] exactInfInterval(1,last vals) csch(u:%):% == contains?(u,0) => error "csch: singularity at zero" qinterval(csch sup u, csch inf u) coth(u:%):% == contains?(u,0) => error "coth: singularity at zero" qinterval(coth sup u, coth inf u) -- From ArcHyperbolicFunctionCategory acosh(u:%):% == inf(u)<1 => error "invalid argument: acosh only defined on the region 1.." qinterval(acosh inf u, acosh sup u) acoth(u:%):% == lo : R := inf(u) hi : R := sup(u) if ((lo <= -1) and (hi >= -1)) or ((lo <= 1) and (hi >= 1)) then error "acoth not defined on the region -1..1" qinterval(acoth hi, acoth lo) acsch(u:%):% == contains?(u,0) => error "acsch: singularity at zero" qinterval(acsch sup u, acsch inf u) asech(u:%):% == lo : R := inf(u) hi : R := sup(u) if (lo <= 0) or (hi > 1) then error "asech only defined on the region 0 < x <= 1" qinterval(asech hi, asech lo) asinh(u:%):% == qinterval(asinh inf u, asinh sup u) atanh(u:%):% == lo : R := inf(u) hi : R := sup(u) if (lo <= -1) or (hi >= 1) then error "atanh only defined on the region -1 < x < 1" qinterval(atanh lo, atanh hi) -- From RadicalCategory u:% ** n:Fraction Integer == interval(inf(u)**n,sup(u)**n) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category INTCAT IntervalCategory>> <<domain INTRVL Interval>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}