\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra intef.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INTEF ElementaryIntegration}
<<package INTEF ElementaryIntegration>>=
)abbrev package INTEF ElementaryIntegration
++ Integration of elementary functions
++ Author: Manuel Bronstein
++ Date Created: 1 February 1988
++ Date Last Updated: 24 October 1995
++ Description:
++ This package provides functions for integration, limited integration,
++ extended integration and the risch differential equation for
++ elemntary functions.
++ Keywords: elementary, function, integration.
++ Examples: )r INTEF INPUT
ElementaryIntegration(R, F): Exports == Implementation where
  R : Join(GcdDomain, CharacteristicZero,
           RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F : Join(AlgebraicallyClosedField, TranscendentalFunctionCategory,
           FunctionSpace R)

  SE  ==> Symbol
  K   ==> Kernel F
  P   ==> SparseMultivariatePolynomial(R, K)
  UP  ==> SparseUnivariatePolynomial F
  RF  ==> Fraction UP
  IR  ==> IntegrationResult F
  FF  ==> Record(ratpart:RF, coeff:RF)
  LLG ==> List Record(coeff:F, logand:F)
  U2  ==> Union(Record(ratpart:F, coeff:F), "failed")
  U3  ==> Union(Record(mainpart:F, limitedlogs:LLG), "failed")
  ANS ==> Record(special:F, integrand:F)
  FAIL==> error "failed - cannot handle that integrand"

  Exports ==> with
    lfextendedint: (F, SE, F) -> U2
       ++ lfextendedint(f, x, g) returns functions \spad{[h, c]} such that
       ++ \spad{dh/dx = f - cg}, if (h, c) exist, "failed" otherwise.
    lflimitedint : (F, SE, List F) -> U3
       ++ lflimitedint(f,x,[g1,...,gn]) returns functions \spad{[h,[[ci, gi]]]}
       ++ such that the gi's are among \spad{[g1,...,gn]}, and
       ++ \spad{d(h+sum(ci log(gi)))/dx = f}, if possible, "failed" otherwise.
    lfinfieldint : (F, SE) -> Union(F, "failed")
       ++ lfinfieldint(f, x) returns a function g such that \spad{dg/dx = f}
       ++ if g exists, "failed" otherwise.
    lfintegrate  : (F, SE) -> IR
       ++ lfintegrate(f, x) = g such that \spad{dg/dx = f}.
    lfextlimint  : (F, SE, K, List K) -> U2
       ++ lfextlimint(f,x,k,[k1,...,kn]) returns functions \spad{[h, c]}
       ++ such that \spad{dh/dx = f - c dk/dx}. Value h is looked for in a field
       ++ containing f and k1,...,kn (the ki's must be logs).

  Implementation ==> add
    macro ALGOP == '%alg
    macro OPDIFF == '%diff
    import IntegrationTools(R, F)
    import ElementaryRischDE(R, F)
    import RationalIntegration(F, UP)
    import AlgebraicIntegration(R, F)
    import AlgebraicManipulations(R, F)
    import ElementaryRischDESystem(R, F)
    import TranscendentalIntegration(F, UP)
    import PureAlgebraicIntegration(R, F, F)
    import IntegrationResultFunctions2(F, F)
    import IntegrationResultFunctions2(RF, F)
    import FunctionSpacePrimitiveElement(R, F)
    import PolynomialCategoryQuotientFunctions(IndexedExponents K,
                                                             K, R, P, F)

    alglfint    : (F, K, List K, SE) -> IR
    alglfextint : (F, K, List K, SE, F) -> U2
    alglflimint : (F, K, List K, SE, List F) -> U3
    primextint  : (F, SE, K, F) -> U2
    expextint   : (F, SE, K, F) -> U2
    primlimint  : (F, SE, K, List F) -> U3
    explimint   : (F, SE, K, List F) -> U3
    algprimint  : (F, K, K, SE) -> IR
    algexpint   : (F, K, K, SE) -> IR
    primint     : (F, SE, K) -> IR
    expint      : (F, SE, K) -> IR
    tanint      : (F, SE, K) -> IR
    prim?       : (K, SE)  -> Boolean
    isx?        : (F, SE)  -> Boolean
    addx        : (IR, F) -> IR
    cfind       : (F, LLG) -> F
    lfintegrate0: (F, SE) -> IR
    unknownint  : (F, SE) -> IR
    unkextint   : (F, SE, F) -> U2
    unklimint   : (F, SE, List F) -> U3
    tryChangeVar: (F, K, SE) -> Union(IR, "failed")
    droponex    : (F, F, K, F) -> Union(F, "failed")

    prim?(k, x)      == is?(k, 'log) or has?(operator k, 'prim)

    tanint(f, x, k) ==
      eta' := differentiate(eta := first argument k, x)
      r1  := tanintegrate(univariate(f, k), differentiate(#1,
              differentiate(#1, x), monomial(eta', 2) + eta'::UP),
                rischDEsys(#1, 2 * eta, #2, #3, x, lflimitedint(#1, x, #2),
                   lfextendedint(#1, x, #2)))
      map(multivariate(#1, k), r1.answer) + lfintegrate(r1.a0, x)

-- tries various tricks since the integrand contains something not elementary
    unknownint(f, x) ==
      ((r := retractIfCan(f)@Union(K, "failed")) case K) and
        is?(k := r::K, OPDIFF) and
          ((ka:=retractIfCan(a:=second(l:=argument k))@Union(K,"failed"))case K)
            and ((z := retractIfCan(zz := third l)@Union(SE, "failed")) case SE)
              and (z::SE = x)
                and ((u := droponex(first l, a, ka, zz)) case F) => u::F::IR
      (da := differentiate(a := denom(f)::F, x)) ~= 0 and
        zero? differentiate(c := numer(f)::F / da, x) => (c * log a)::IR
      mkAnswer(0, empty(), [[f, x::F]])

    droponex(f, a, ka, x) ==
      (r := retractIfCan(f)@Union(K, "failed")) case "failed" => "failed"
      is?(op := operator(k := r::K), OPDIFF) =>
        (z := third(arg := argument k)) = a => op [first arg, second arg, x]
        (u := droponex(first arg, a, ka, x)) case "failed" => "failed"
        op [u::F, second arg, z]
      eval(f, [ka], [x])

    unklimint(f, x, lu) ==
      for u in lu | u ~= 0 repeat
        zero? differentiate(c := f * u / differentiate(u, x), x) => [0,[[c,u]]]
      "failed"

    unkextint(f, x, g) ==
      zero?(g' := differentiate(g, x)) => "failed"
      zero? differentiate(c := f / g', x) => [0, c]
      "failed"

    isx?(f, x) ==
      (k := retractIfCan(f)@Union(K, "failed")) case "failed" => false
      (r := symbolIfCan(k::K)) case "failed" => false
      r::SE = x

    alglfint(f, k, l, x) ==
      xf := x::F
      symbolIfCan(kx := ksec(k,l,x)) case SE => addx(palgint(f, kx, k), xf)
      is?(kx, 'exp) => addx(algexpint(f, kx, k, x), xf)
      prim?(kx, x)       => addx(algprimint(f, kx, k, x), xf)
      has?(operator kx, ALGOP) =>
        rec := primitiveElement(kx::F, k::F)
        y   := rootOf(rec.prim)
        map(eval(#1, retract(y)@K, rec.primelt),
          lfintegrate(eval(f, [kx,k], [(rec.pol1) y, (rec.pol2) y]), x))
      unknownint(f, x)

    alglfextint(f, k, l, x, g) ==
      symbolIfCan(kx := ksec(k,l,x)) case SE => palgextint(f, kx, k, g)
      has?(operator kx, ALGOP) =>
        rec := primitiveElement(kx::F, k::F)
        y   := rootOf(rec.prim)
        lrhs := [(rec.pol1) y, (rec.pol2) y]$List(F)
        (u := lfextendedint(eval(f, [kx, k], lrhs), x,
                    eval(g, [kx, k], lrhs))) case "failed" => "failed"
        ky := retract(y)@K
        r := u::Record(ratpart:F, coeff:F)
        [eval(r.ratpart,ky,rec.primelt), eval(r.coeff,ky,rec.primelt)]
      is?(kx, 'exp) or is?(kx, 'log) => FAIL
      unkextint(f, x, g)

    alglflimint(f, k, l, x, lu) ==
      symbolIfCan(kx := ksec(k,l,x)) case SE => palglimint(f, kx, k, lu)
      has?(operator kx, ALGOP) =>
        rec := primitiveElement(kx::F, k::F)
        y   := rootOf(rec.prim)
        lrhs := [(rec.pol1) y, (rec.pol2) y]$List(F)
        (u := lflimitedint(eval(f, [kx, k], lrhs), x,
           map(eval(#1, [kx, k], lrhs), lu))) case "failed" => "failed"
        ky := retract(y)@K
        r := u::Record(mainpart:F, limitedlogs:LLG)
        [eval(r.mainpart, ky, rec.primelt),
          [[eval(rc.coeff, ky, rec.primelt),
            eval(rc.logand,ky, rec.primelt)] for rc in r.limitedlogs]]
      is?(kx, 'exp) or is?(kx, 'log) => FAIL
      unklimint(f, x, lu)

    if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer)
      and F has Join(LiouvillianFunctionCategory, RetractableTo SE) then
        import PatternMatchIntegration(R, F)
        lfintegrate(f, x) == intPatternMatch(f, x, lfintegrate0, pmintegrate)

    else lfintegrate(f, x) == lfintegrate0(f, x)

    lfintegrate0(f, x) ==
      zero? f => 0
      xf := x::F
      empty?(l := varselect(kernels f, x)) => (xf * f)::IR
      symbolIfCan(k := kmax l) case SE =>
        map(multivariate(#1, k), integrate univariate(f, k))
      is?(k, 'tan)  => addx(tanint(f, x, k), xf)
      is?(k, 'exp)  => addx(expint(f, x, k), xf)
      prim?(k, x)        => addx(primint(f, x, k), xf)
      has?(operator k, ALGOP) => alglfint(f, k, l, x)
      unknownint(f, x)

    addx(i, x) ==
      elem? i => i
      mkAnswer(ratpart i, logpart i,
                                [[ne.integrand, x] for ne in notelem i])

    tryChangeVar(f, t, x) ==
        z := new()$Symbol
        g := subst(f / differentiate(t::F, x), [t], [z::F])
        freeOf?(g, x) =>               -- can we do change of variables?
            map(eval(#1, kernel z, t::F), lfintegrate(g, z))
        "failed"

    algexpint(f, t, y, x) ==
        (u := tryChangeVar(f, t, x)) case IR => u::IR
        algint(f, t, y,  differentiate(#1, differentiate(#1, x),
                       monomial(differentiate(first argument t, x), 1)))

    algprimint(f, t, y, x) ==
        (u := tryChangeVar(f, t, x)) case IR => u::IR
        algint(f, t, y, differentiate(#1, differentiate(#1, x),
                                            differentiate(t::F, x)::UP))

    lfextendedint(f, x, g) ==
      empty?(l := varselect(kernels f, x)) => [x::F * f, 0]
      symbolIfCan(k := kmax(l))
        case SE =>
          map(multivariate(#1, k), extendedint(univariate(f, k),
                                               univariate(g, k)))
      is?(k, 'exp) => expextint(f, x, k, g)
      prim?(k, x)       => primextint(f, x, k, g)
      has?(operator k, ALGOP) => alglfextint(f, k, l, x, g)
      unkextint(f, x, g)

    lflimitedint(f, x, lu) ==
      empty?(l := varselect(kernels f, x)) => [x::F * f, empty()]
      symbolIfCan(k := kmax(l)) case SE =>
       map(multivariate(#1, k), limitedint(univariate(f, k),
                                        [univariate(u, k) for u in lu]))
      is?(k, 'exp) => explimint(f, x, k, lu)
      prim?(k, x)       => primlimint(f, x, k, lu)
      has?(operator k, ALGOP) => alglflimint(f, k, l, x, lu)
      unklimint(f, x, lu)

    lfinfieldint(f, x) ==
      (u := lfextendedint(f, x, 0)) case "failed" => "failed"
      u.ratpart

    primextint(f, x, k, g) ==
      lk := varselect([a for a in tower f
                                     | k ~= a and is?(a, 'log)], x)
      (u1 := primextendedint(univariate(f, k), differentiate(#1,
           differentiate(#1, x), differentiate(k::F, x)::UP),
             lfextlimint(#1, x, k, lk), univariate(g, k))) case "failed"
                => "failed"
      u1 case FF =>
        [multivariate(u1.ratpart, k), multivariate(u1.coeff, k)]
      (u2 := lfextendedint(u1.a0, x, g)) case "failed" => "failed"
      [multivariate(u1.answer, k) + u2.ratpart, u2.coeff]

    expextint(f, x, k, g) ==
      (u1 := expextendedint(univariate(f, k), differentiate(#1,
         differentiate(#1, x),
          monomial(differentiate(first argument k, x), 1)),
           rischDE(#1, first argument k, #2, x, lflimitedint(#1, x, #2),
            lfextendedint(#1, x, #2)), univariate(g, k)))
               case "failed" => "failed"
      u1 case FF =>
        [multivariate(u1.ratpart, k), multivariate(u1.coeff, k)]
      (u2 := lfextendedint(u1.a0, x, g)) case "failed" => "failed"
      [multivariate(u1.answer, k) + u2.ratpart, u2.coeff]

    primint(f, x, k) ==
      lk := varselect([a for a in tower f
                                     | k ~= a and is?(a, 'log)], x)
      r1 := primintegrate(univariate(f, k), differentiate(#1,
                      differentiate(#1, x), differentiate(k::F, x)::UP),
                                              lfextlimint(#1, x, k, lk))
      map(multivariate(#1, k), r1.answer) + lfintegrate(r1.a0, x)

    lfextlimint(f, x, k, lk) ==
      not((u1 := lfextendedint(f, x, differentiate(k::F, x)))
        case "failed") => u1
      twr := tower f
      empty?(lg := [kk for kk in lk | not member?(kk, twr)]) => "failed"
      is?(k, 'log) =>
        (u2 := lflimitedint(f, x,
          [first argument u for u in union(lg, [k])])) case "failed"
                                                             => "failed"
        cf := cfind(first argument k, u2.limitedlogs)
        [u2.mainpart - cf * k::F +
                +/[c.coeff * log(c.logand) for c in u2.limitedlogs], cf]
      "failed"

    cfind(f, l) ==
      for u in l repeat
        f = u.logand => return u.coeff
      0

    expint(f, x, k) ==
      eta := first argument k
      r1  := expintegrate(univariate(f, k), differentiate(#1,
              differentiate(#1, x), monomial(differentiate(eta, x), 1)),
                 rischDE(#1, eta, #2, x, lflimitedint(#1, x, #2),
                   lfextendedint(#1, x, #2)))
      map(multivariate(#1, k), r1.answer) + lfintegrate(r1.a0, x)

    primlimint(f, x, k, lu) ==
      lk := varselect([a for a in tower f
                                     | k ~= a and is?(a, 'log)], x)
      (u1 := primlimitedint(univariate(f, k), differentiate(#1,
          differentiate(#1, x), differentiate(k::F, x)::UP),
             lfextlimint(#1, x, k, lk), [univariate(u, k) for u in lu]))
                                               case "failed" => "failed"
      l := [[multivariate(lg.coeff, k),multivariate(lg.logand, k)]
                                    for lg in u1.answer.limitedlogs]$LLG
      (u2 := lflimitedint(u1.a0, x, lu)) case "failed" => "failed"
      [multivariate(u1.answer.mainpart, k) + u2.mainpart,
                                              concat(u2.limitedlogs, l)]

    explimint(f, x, k, lu) ==
      eta := first argument k
      (u1 := explimitedint(univariate(f, k), differentiate(#1,
        differentiate(#1, x), monomial(differentiate(eta, x), 1)),
          rischDE(#1, eta, #2, x,
            lflimitedint(#1, x, #2), lfextendedint(#1, x, #2)),
              [univariate(u, k) for u in lu])) case "failed" => "failed"
      l := [[multivariate(lg.coeff, k),multivariate(lg.logand, k)]
                                    for lg in u1.answer.limitedlogs]$LLG
      (u2 := lflimitedint(u1.a0, x, lu)) case "failed" => "failed"
      [multivariate(u1.answer.mainpart, k) + u2.mainpart,
                                              concat(u2.limitedlogs, l)]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- SPAD files for the integration world should be compiled in the
-- following order:
--
--   intaux  rderf  intrf  curve  curvepkg  divisor  pfo
--   intalg  intaf  efstruc  rdeef  intpm INTEF  irexpand  integrat

<<package INTEF ElementaryIntegration>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}