\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra intalg.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package DBLRESP DoubleResultantPackage} <<package DBLRESP DoubleResultantPackage>>= )abbrev package DBLRESP DoubleResultantPackage ++ Residue resultant ++ Author: Manuel Bronstein ++ Date Created: 1987 ++ Date Last Updated: 12 July 1990 ++ Description: ++ This package provides functions for computing the residues ++ of a function on an algebraic curve. DoubleResultantPackage(F, UP, UPUP, R): Exports == Implementation where F : Field UP : UnivariatePolynomialCategory F UPUP: UnivariatePolynomialCategory Fraction UP R : FunctionFieldCategory(F, UP, UPUP) RF ==> Fraction UP UP2 ==> SparseUnivariatePolynomial UP UP3 ==> SparseUnivariatePolynomial UP2 Exports ==> with doubleResultant: (R, UP -> UP) -> UP ++ doubleResultant(f, ') returns p(x) whose roots are ++ rational multiples of the residues of f at all its ++ finite poles. Argument ' is the derivation to use. Implementation ==> add import CommuteUnivariatePolynomialCategory(F, UP, UP2) import UnivariatePolynomialCommonDenominator(UP, RF, UPUP) UP22 : UP -> UP2 UP23 : UPUP -> UP3 remove0: UP -> UP -- removes the power of x dividing p remove0 p == primitivePart((p exquo monomial(1, minimumDegree p))::UP) UP22 p == map(#1::UP, p)$UnivariatePolynomialCategoryFunctions2(F,UP,UP,UP2) UP23 p == map(UP22(retract(#1)@UP), p)$UnivariatePolynomialCategoryFunctions2(RF, UPUP, UP2, UP3) doubleResultant(h, derivation) == cd := splitDenominator lift h d := (cd.den exquo (g := gcd(cd.den, derivation(cd.den))))::UP r := swap primitivePart swap resultant(UP23(cd.num) - ((monomial(1, 1)$UP :: UP2) * UP22(g * derivation d))::UP3, UP23 definingPolynomial()) remove0 resultant(r, UP22 d) @ \section{package INTHERAL AlgebraicHermiteIntegration} <<package INTHERAL AlgebraicHermiteIntegration>>= )abbrev package INTHERAL AlgebraicHermiteIntegration ++ Hermite integration, algebraic case ++ Author: Manuel Bronstein ++ Date Created: 1987 ++ Date Last Updated: 25 July 1990 ++ Description: algebraic Hermite redution. AlgebraicHermiteIntegration(F,UP,UPUP,R):Exports == Implementation where F : Field UP : UnivariatePolynomialCategory F UPUP: UnivariatePolynomialCategory Fraction UP R : FunctionFieldCategory(F, UP, UPUP) N ==> NonNegativeInteger RF ==> Fraction UP Exports ==> with HermiteIntegrate: (R, UP -> UP) -> Record(answer:R, logpart:R) ++ HermiteIntegrate(f, ') returns \spad{[g,h]} such that ++ \spad{f = g' + h} and h has a only simple finite normal poles. Implementation ==> add localsolve: (Matrix UP, Vector UP, UP) -> Vector UP -- the denominator of f should have no prime factor P s.t. P | P' -- (which happens only for P = t in the exponential case) HermiteIntegrate(f, derivation) == ratform:R := 0 n := rank() m := transpose((mat:= integralDerivationMatrix derivation).num) inum := (cform := integralCoordinates f).num if ((iden := cform.den) exquo (e := mat.den)) case "failed" then iden := (coef := (e exquo gcd(e, iden))::UP) * iden inum := coef * inum for trm in factors squareFree iden | (j:= trm.exponent) > 1 repeat u':=(u:=(iden exquo (v:=trm.factor)**(j::N))::UP) * derivation v sys := ((u * v) exquo e)::UP * m nn := minRowIndex sys - minIndex inum while j > 1 repeat j := j - 1 p := - j * u' sol := localsolve(sys + scalarMatrix(n, p), inum, v) ratform := ratform + integralRepresents(sol, v ** (j::N)) inum := [((qelt(inum, i) - p * qelt(sol, i) - dot(row(sys, i - nn), sol)) exquo v)::UP - u * derivation qelt(sol, i) for i in minIndex inum .. maxIndex inum] iden := u * v [ratform, integralRepresents(inum, iden)] localsolve(mat, vec, modulus) == ans:Vector(UP) := new(nrows mat, 0) diagonal? mat => for i in minIndex ans .. maxIndex ans for j in minRowIndex mat .. maxRowIndex mat for k in minColIndex mat .. maxColIndex mat repeat (bc := extendedEuclidean(qelt(mat, j, k), modulus, qelt(vec, i))) case "failed" => return new(0, 0) qsetelt!(ans, i, bc.coef1) ans sol := particularSolution(map(#1::RF, mat)$MatrixCategoryFunctions2(UP, Vector UP, Vector UP, Matrix UP, RF, Vector RF, Vector RF, Matrix RF), map(#1::RF, vec)$VectorFunctions2(UP, RF))$LinearSystemMatrixPackage(RF, Vector RF, Vector RF, Matrix RF) sol case "failed" => new(0, 0) for i in minIndex ans .. maxIndex ans repeat (bc := extendedEuclidean(denom qelt(sol, i), modulus, 1)) case "failed" => return new(0, 0) qsetelt!(ans, i, (numer qelt(sol, i) * bc.coef1) rem modulus) ans @ \section{package INTALG AlgebraicIntegrate} <<package INTALG AlgebraicIntegrate>>= )abbrev package INTALG AlgebraicIntegrate ++ Integration of an algebraic function ++ Author: Manuel Bronstein ++ Date Created: 1987 ++ Date Last Updated: 19 May 1993 ++ Description: ++ This package provides functions for integrating a function ++ on an algebraic curve. AlgebraicIntegrate(R0, F, UP, UPUP, R): Exports == Implementation where R0 : Join(IntegralDomain, RetractableTo Integer) F : Join(AlgebraicallyClosedField, FunctionSpace R0) UP : UnivariatePolynomialCategory F UPUP : UnivariatePolynomialCategory Fraction UP R : FunctionFieldCategory(F, UP, UPUP) SE ==> Symbol Z ==> Integer Q ==> Fraction Z SUP ==> SparseUnivariatePolynomial F QF ==> Fraction UP GP ==> LaurentPolynomial(F, UP) K ==> Kernel F IR ==> IntegrationResult R UPQ ==> SparseUnivariatePolynomial Q UPR ==> SparseUnivariatePolynomial R FRQ ==> Factored UPQ FD ==> FiniteDivisor(F, UP, UPUP, R) FAC ==> Record(factor:UPQ, exponent:Z) LOG ==> Record(scalar:Q, coeff:UPR, logand:UPR) DIV ==> Record(num:R, den:UP, derivden:UP, gd:UP) FAIL0 ==> error "integrate: implementation incomplete (constant residues)" FAIL1==> error "integrate: implementation incomplete (non-algebraic residues)" FAIL2 ==> error "integrate: implementation incomplete (residue poly has multiple non-linear factors)" FAIL3 ==> error "integrate: implementation incomplete (has polynomial part)" NOTI ==> error "Not integrable (provided residues have no relations)" Exports ==> with algintegrate : (R, UP -> UP) -> IR ++ algintegrate(f, d) integrates f with respect to the derivation d. palgintegrate : (R, UP -> UP) -> IR ++ palgintegrate(f, d) integrates f with respect to the derivation d. ++ Argument f must be a pure algebraic function. palginfieldint: (R, UP -> UP) -> Union(R, "failed") ++ palginfieldint(f, d) returns an algebraic function g ++ such that \spad{dg = f} if such a g exists, "failed" otherwise. ++ Argument f must be a pure algebraic function. Implementation ==> add import FD import DoubleResultantPackage(F, UP, UPUP, R) import PointsOfFiniteOrder(R0, F, UP, UPUP, R) import AlgebraicHermiteIntegration(F, UP, UPUP, R) import InnerCommonDenominator(Z, Q, List Z, List Q) import FunctionSpaceUnivariatePolynomialFactor(R0, F, UP) import PolynomialCategoryQuotientFunctions(IndexedExponents K, K, R0, SparseMultivariatePolynomial(R0, K), F) F2R : F -> R F2UPR : F -> UPR UP2SUP : UP -> SUP SUP2UP : SUP -> UP UPQ2F : UPQ -> UP univ : (F, K) -> QF pLogDeriv : (LOG, R -> R) -> R nonLinear : List FAC -> Union(FAC, "failed") mkLog : (UP, Q, R, F) -> List LOG R2UP : (R, K) -> UPR alglogint : (R, UP -> UP) -> Union(List LOG, "failed") palglogint : (R, UP -> UP) -> Union(List LOG, "failed") trace00 : (DIV, UP, List LOG) -> Union(List LOG,"failed") trace0 : (DIV, UP, Q, FD) -> Union(List LOG, "failed") trace1 : (DIV, UP, List Q, List FD, Q) -> Union(List LOG, "failed") nonQ : (DIV, UP) -> Union(List LOG, "failed") rlift : (F, K, K) -> R varRoot? : (UP, F -> F) -> Boolean algintexp : (R, UP -> UP) -> IR algintprim : (R, UP -> UP) -> IR dummy:R := 0 dumx := kernel(new()$SE)$K dumy := kernel(new()$SE)$K F2UPR f == F2R(f)::UPR F2R f == f::UP::QF::R algintexp(f, derivation) == d := (c := integralCoordinates f).den v := c.num vp:Vector(GP) := new(n := #v, 0) vf:Vector(QF) := new(n, 0) for i in minIndex v .. maxIndex v repeat r := separate(qelt(v, i) / d)$GP qsetelt!(vf, i, r.fracPart) qsetelt!(vp, i, r.polyPart) ff := represents(vf, w := integralBasis()) h := HermiteIntegrate(ff, derivation) p := represents(map(convert(#1)@QF, vp)$VectorFunctions2(GP, QF), w) zero?(h.logpart) and zero? p => h.answer::IR (u := alglogint(h.logpart, derivation)) case "failed" => mkAnswer(h.answer, empty(), [[p + h.logpart, dummy]]) zero? p => mkAnswer(h.answer, u::List(LOG), empty()) FAIL3 algintprim(f, derivation) == h := HermiteIntegrate(f, derivation) zero?(h.logpart) => h.answer::IR (u := alglogint(h.logpart, derivation)) case "failed" => mkAnswer(h.answer, empty(), [[h.logpart, dummy]]) mkAnswer(h.answer, u::List(LOG), empty()) -- checks whether f = +/[ci (ui)'/(ui)] -- f dx must have no pole at infinity palglogint(f, derivation) == rec := algSplitSimple(f, derivation) ground?(r := doubleResultant(f, derivation)) => "failed" -- r(z) has roots which are the residues of f at all its poles (u := qfactor r) case "failed" => nonQ(rec, r) (fc := nonLinear(lf := factors(u::FRQ))) case "failed" => FAIL2 -- at this point r(z) = fc(z) (z - b1)^e1 .. (z - bk)^ek -- where the ri's are rational numbers, and fc(z) is arbitrary -- (fc can be linear too) -- la = [b1....,bk] (all rational residues) la := [- coefficient(q.factor, 0) for q in remove!(fc::FAC, lf)] -- ld = [D1,...,Dk] where Di is the sum of places where f has residue bi ld := [divisor(rec.num, rec.den, rec.derivden, rec.gd, b::F) for b in la] pp := UPQ2F(fc.factor) -- bb = - sum of all the roots of fc (i.e. the other residues) zero?(bb := coefficient(fc.factor, (degree(fc.factor) - 1)::NonNegativeInteger)) => -- cd = [[a1,...,ak], d] such that bi = ai/d cd := splitDenominator la -- g = gcd(a1,...,ak), so bi = (g/d) ci with ci = bi / g -- so [g/d] is a basis for [a1,...,ak] over the integers g := gcd(cd.num) -- dv0 is the divisor +/[ci Di] corresponding to all the residues -- of f except the ones which are root of fc(z) dv0 := +/[(a quo g) * dv for a in cd.num for dv in ld] trace0(rec, pp, g / cd.den, dv0) trace1(rec, pp, la, ld, bb) UPQ2F p == map(#1::F, p)$UnivariatePolynomialCategoryFunctions2(Q,UPQ,F,UP) UP2SUP p == map(#1, p)$UnivariatePolynomialCategoryFunctions2(F, UP, F, SUP) SUP2UP p == map(#1, p)$UnivariatePolynomialCategoryFunctions2(F, SUP, F, UP) varRoot?(p, derivation) == for c in coefficients primitivePart p repeat derivation(c) ~= 0 => return true false pLogDeriv(log, derivation) == map(derivation, log.coeff) ~= 0 => error "can only handle logs with constant coefficients" one?(n := degree(log.coeff)) => c := - (leadingCoefficient reductum log.coeff) / (leadingCoefficient log.coeff) ans := (log.logand) c (log.scalar)::R * c * derivation(ans) / ans numlog := map(derivation, log.logand) (diflog := extendedEuclidean(log.logand, log.coeff, numlog)) case "failed" => error "this shouldn't happen" algans := diflog.coef1 ans:R := 0 for i in 0..n-1 repeat algans := (algans * monomial(1, 1)) rem log.coeff ans := ans + coefficient(algans, i) (log.scalar)::R * ans R2UP(f, k) == x := dumx :: F g := (map(#1 x, lift f)$UnivariatePolynomialCategoryFunctions2(QF, UPUP, F, UP)) (y := dumy::F) map(rlift(#1, dumx, dumy), univariate(g, k, minPoly k))$UnivariatePolynomialCategoryFunctions2(F,SUP,R,UPR) univ(f, k) == g := univariate(f, k) (SUP2UP numer g) / (SUP2UP denom g) rlift(f, kx, ky) == reduce map(univ(#1, kx), retract(univariate(f, ky))@SUP)$UnivariatePolynomialCategoryFunctions2(F,SUP,QF,UPUP) nonQ(rec, p) == empty? rest(lf := factors ffactor primitivePart p) => trace00(rec, first(lf).factor, empty()$List(LOG)) FAIL1 -- case when the irreducible factor p has roots which sum to 0 -- p is assumed doubly transitive for now trace0(rec, q, r, dv0) == lg:List(LOG) := zero? dv0 => empty() (rc0 := torsionIfCan dv0) case "failed" => NOTI mkLog(1, r / (rc0.order::Q), rc0.function, 1) trace00(rec, q, lg) trace00(rec, pp, lg) == p0 := divisor(rec.num, rec.den, rec.derivden, rec.gd, alpha0 := zeroOf UP2SUP pp) q := (pp exquo (monomial(1, 1)$UP - alpha0::UP))::UP alpha := rootOf UP2SUP q dvr := divisor(rec.num, rec.den, rec.derivden, rec.gd, alpha) - p0 (rc := torsionIfCan dvr) case "failed" => degree(pp) <= 2 => "failed" NOTI concat(lg, mkLog(q, inv(rc.order::Q), rc.function, alpha)) -- case when the irreducible factor p has roots which sum <> 0 -- the residues of f are of the form [a1,...,ak] rational numbers -- plus all the roots of q(z), which is squarefree -- la is the list of residues la := [a1,...,ak] -- ld is the list of divisors [D1,...Dk] where Di is the sum of all the -- places where f has residue ai -- q(z) is assumed doubly transitive for now. -- let [alpha_1,...,alpha_m] be the roots of q(z) -- in this function, b = - alpha_1 - ... - alpha_m is <> 0 -- which implies only one generic log term trace1(rec, q, la, ld, b) == -- cd = [[b1,...,bk], d] such that ai / b = bi / d cd := splitDenominator [a / b for a in la] -- then, a basis for all the residues of f over the integers is -- [beta_1 = - alpha_1 / d,..., beta_m = - alpha_m / d], since: -- alpha_i = - d beta_i -- ai = (ai / b) * b = (bi / d) * b = b1 * beta_1 + ... + bm * beta_m -- linear independence is a consequence of the doubly transitive assumption -- v0 is the divisor +/[bi Di] corresponding to the residues [a1,...,ak] v0 := +/[a * dv for a in cd.num for dv in ld] -- alpha is a generic root of q(z) alpha := rootOf UP2SUP q -- v is the divisor corresponding to all the residues v := v0 - cd.den * divisor(rec.num, rec.den, rec.derivden, rec.gd, alpha) (rc := torsionIfCan v) case "failed" => -- non-torsion case degree(q) <= 2 => "failed" -- guaranteed doubly-transitive NOTI -- maybe doubly-transitive mkLog(q, inv((- rc.order * cd.den)::Q), rc.function, alpha) mkLog(q, scalr, lgd, alpha) == degree(q) <= 1 => [[scalr, monomial(1, 1)$UPR - F2UPR alpha, lgd::UPR]] [[scalr, map(F2R, q)$UnivariatePolynomialCategoryFunctions2(F,UP,R,UPR), R2UP(lgd, retract(alpha)@K)]] -- return the non-linear factor, if unique -- or any linear factor if they are all linear nonLinear l == found:Boolean := false ans := first l for q in l repeat if degree(q.factor) > 1 then found => return "failed" found := true ans := q ans -- f dx must be locally integral at infinity palginfieldint(f, derivation) == h := HermiteIntegrate(f, derivation) zero?(h.logpart) => h.answer "failed" -- f dx must be locally integral at infinity palgintegrate(f, derivation) == h := HermiteIntegrate(f, derivation) zero?(h.logpart) => h.answer::IR (not integralAtInfinity?(h.logpart)) or ((u := palglogint(h.logpart, derivation)) case "failed") => mkAnswer(h.answer, empty(), [[h.logpart, dummy]]) zero?(difFirstKind := h.logpart - +/[pLogDeriv(lg, differentiate(#1, derivation)) for lg in u::List(LOG)]) => mkAnswer(h.answer, u::List(LOG), empty()) mkAnswer(h.answer, u::List(LOG), [[difFirstKind, dummy]]) -- for mixed functions. f dx not assumed locally integral at infinity algintegrate(f, derivation) == zero? degree(x' := derivation(x := monomial(1, 1)$UP)) => algintprim(f, derivation) ((xx := x' exquo x) case UP) and (retractIfCan(xx::UP)@Union(F, "failed") case F) => algintexp(f, derivation) error "should not happen" alglogint(f, derivation) == varRoot?(doubleResultant(f, derivation), retract(derivation(#1::UP))@F) => "failed" FAIL0 @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- SPAD files for the integration world should be compiled in the -- following order: -- -- intaux rderf intrf curve curvepkg divisor pfo -- INTALG intaf efstruc rdeef intef irexpand integrat <<package DBLRESP DoubleResultantPackage>> <<package INTHERAL AlgebraicHermiteIntegration>> <<package INTALG AlgebraicIntegrate>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}