\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra infprod.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package STINPROD StreamInfiniteProduct} <<package STINPROD StreamInfiniteProduct>>= )abbrev package STINPROD StreamInfiniteProduct ++ Author: Clifton J. Williamson ++ Date Created: 23 February 1990 ++ Date Last Updated: 23 February 1990 ++ Basic Operations: infiniteProduct, evenInfiniteProduct, oddInfiniteProduct, ++ generalInfiniteProduct ++ Related Domains: UnivariateTaylorSeriesCategory ++ Also See: ++ AMS Classifications: ++ Keywords: Taylor series, infinite product ++ Examples: ++ References: ++ Description: ++ This package computes infinite products of Taylor series over an ++ integral domain of characteristic 0. Here Taylor series are ++ represented by streams of Taylor coefficients. StreamInfiniteProduct(Coef): Exports == Implementation where Coef: Join(IntegralDomain,CharacteristicZero) I ==> Integer QF ==> Fraction ST ==> Stream Exports ==> with infiniteProduct: ST Coef -> ST Coef ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. evenInfiniteProduct: ST Coef -> ST Coef ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. oddInfiniteProduct: ST Coef -> ST Coef ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. generalInfiniteProduct: (ST Coef,I,I) -> ST Coef ++ generalInfiniteProduct(f(x),a,d) computes ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. Implementation ==> add if Coef has Field then import StreamTaylorSeriesOperations(Coef) import StreamTranscendentalFunctions(Coef) infiniteProduct st == exp lambert log st evenInfiniteProduct st == exp evenlambert log st oddInfiniteProduct st == exp oddlambert log st generalInfiniteProduct(st,a,d) == exp generalLambert(log st,a,d) else import StreamTaylorSeriesOperations(QF Coef) import StreamTranscendentalFunctions(QF Coef) applyOverQF:(ST QF Coef -> ST QF Coef,ST Coef) -> ST Coef applyOverQF(f,st) == stQF := map(#1 :: QF(Coef),st)$StreamFunctions2(Coef,QF Coef) map(retract(#1)@Coef,f stQF)$StreamFunctions2(QF Coef,Coef) infiniteProduct st == applyOverQF(exp lambert log #1,st) evenInfiniteProduct st == applyOverQF(exp evenlambert log #1,st) oddInfiniteProduct st == applyOverQF(exp oddlambert log #1,st) generalInfiniteProduct(st,a,d) == applyOverQF(exp generalLambert(log #1,a,d),st) @ \section{package INFPROD0 InfiniteProductCharacteristicZero} <<package INFPROD0 InfiniteProductCharacteristicZero>>= )abbrev package INFPROD0 InfiniteProductCharacteristicZero ++ Author: Clifton J. Williamson ++ Date Created: 22 February 1990 ++ Date Last Updated: 23 February 1990 ++ Basic Operations: infiniteProduct, evenInfiniteProduct, oddInfiniteProduct, ++ generalInfiniteProduct ++ Related Domains: UnivariateTaylorSeriesCategory ++ Also See: ++ AMS Classifications: ++ Keywords: Taylor series, infinite product ++ Examples: ++ References: ++ Description: ++ This package computes infinite products of univariate Taylor series ++ over an integral domain of characteristic 0. InfiniteProductCharacteristicZero(Coef,UTS):_ Exports == Implementation where Coef : Join(IntegralDomain,CharacteristicZero) UTS : UnivariateTaylorSeriesCategory Coef I ==> Integer Exports ==> with infiniteProduct: UTS -> UTS ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. evenInfiniteProduct: UTS -> UTS ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. oddInfiniteProduct: UTS -> UTS ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. generalInfiniteProduct: (UTS,I,I) -> UTS ++ generalInfiniteProduct(f(x),a,d) computes ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. Implementation ==> add import StreamInfiniteProduct Coef infiniteProduct x == series infiniteProduct coefficients x evenInfiniteProduct x == series evenInfiniteProduct coefficients x oddInfiniteProduct x == series oddInfiniteProduct coefficients x generalInfiniteProduct(x,a,d) == series generalInfiniteProduct(coefficients x,a,d) @ \section{package INPRODPF InfiniteProductPrimeField} <<package INPRODPF InfiniteProductPrimeField>>= )abbrev package INPRODPF InfiniteProductPrimeField ++ Author: Clifton J. Williamson ++ Date Created: 22 February 1990 ++ Date Last Updated: 23 February 1990 ++ Basic Operations: infiniteProduct, evenInfiniteProduct, oddInfiniteProduct, ++ generalInfiniteProduct ++ Related Domains: UnivariateTaylorSeriesCategory ++ Also See: ++ AMS Classifications: ++ Keywords: Taylor series, infinite product ++ Examples: ++ References: ++ Description: ++ This package computes infinite products of univariate Taylor series ++ over a field of prime order. InfiniteProductPrimeField(Coef,UTS): Exports == Implementation where Coef : Join(Field,Finite,ConvertibleTo Integer) UTS : UnivariateTaylorSeriesCategory Coef I ==> Integer ST ==> Stream Exports ==> with infiniteProduct: UTS -> UTS ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. evenInfiniteProduct: UTS -> UTS ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. oddInfiniteProduct: UTS -> UTS ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. generalInfiniteProduct: (UTS,I,I) -> UTS ++ generalInfiniteProduct(f(x),a,d) computes ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. Implementation ==> add import StreamInfiniteProduct Integer applyOverZ:(ST I -> ST I,ST Coef) -> ST Coef applyOverZ(f,st) == stZ := map(convert(#1)@Integer,st)$StreamFunctions2(Coef,I) map(#1 :: Coef,f stZ)$StreamFunctions2(I,Coef) infiniteProduct x == series applyOverZ(infiniteProduct,coefficients x) evenInfiniteProduct x == series applyOverZ(evenInfiniteProduct,coefficients x) oddInfiniteProduct x == series applyOverZ(oddInfiniteProduct,coefficients x) generalInfiniteProduct(x,a,d) == series applyOverZ(generalInfiniteProduct(#1,a,d),coefficients x) @ \section{package INPRODFF InfiniteProductFiniteField} <<package INPRODFF InfiniteProductFiniteField>>= )abbrev package INPRODFF InfiniteProductFiniteField ++ Author: Clifton J. Williamson ++ Date Created: 22 February 1990 ++ Date Last Updated: 23 February 1990 ++ Basic Operations: infiniteProduct, evenInfiniteProduct, oddInfiniteProduct, ++ generalInfiniteProduct ++ Related Domains: UnivariateTaylorSeriesCategory ++ Also See: ++ AMS Classifications: ++ Keywords: Taylor series, infinite product ++ Examples: ++ References: ++ Description: ++ This package computes infinite products of univariate Taylor series ++ over an arbitrary finite field. InfiniteProductFiniteField(K,UP,Coef,UTS):_ Exports == Implementation where K : Join(Field,Finite,ConvertibleTo Integer) UP : UnivariatePolynomialCategory K Coef : MonogenicAlgebra(K,UP) UTS : UnivariateTaylorSeriesCategory Coef I ==> Integer RN ==> Fraction Integer SAE ==> SimpleAlgebraicExtension ST ==> Stream STF ==> StreamTranscendentalFunctions STT ==> StreamTaylorSeriesOperations ST2 ==> StreamFunctions2 SUP ==> SparseUnivariatePolynomial Exports ==> with infiniteProduct: UTS -> UTS ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. evenInfiniteProduct: UTS -> UTS ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. oddInfiniteProduct: UTS -> UTS ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. generalInfiniteProduct: (UTS,I,I) -> UTS ++ generalInfiniteProduct(f(x),a,d) computes ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}. ++ The series \spad{f(x)} should have constant coefficient 1. Implementation ==> add liftPoly: UP -> SUP RN liftPoly poly == -- lift coefficients of 'poly' to integers ans : SUP RN := 0 while not zero? poly repeat coef := convert(leadingCoefficient poly)@I :: RN ans := ans + monomial(coef,degree poly) poly := reductum poly ans reducePoly: SUP RN -> UP reducePoly poly == -- reduce coefficients of 'poly' to elements of K ans : UP := 0 while not zero? poly repeat coef := numer(leadingCoefficient(poly)) :: K ans := ans + monomial(coef,degree poly) poly := reductum poly ans POLY := liftPoly definingPolynomial()$Coef ALG := SAE(RN,SUP RN,POLY) infiniteProduct x == stUP := map(lift,coefficients x)$ST2(Coef,UP) stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN) stALG := map(reduce,stSUP)$ST2(SUP RN,ALG) stALG := exp(lambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG) stSUP := map(lift,stALG)$ST2(ALG,SUP RN) stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP) series map(reduce,stUP)$ST2(UP,Coef) evenInfiniteProduct x == stUP := map(lift,coefficients x)$ST2(Coef,UP) stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN) stALG := map(reduce,stSUP)$ST2(SUP RN,ALG) stALG := exp(evenlambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG) stSUP := map(lift,stALG)$ST2(ALG,SUP RN) stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP) series map(reduce,stUP)$ST2(UP,Coef) oddInfiniteProduct x == stUP := map(lift,coefficients x)$ST2(Coef,UP) stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN) stALG := map(reduce,stSUP)$ST2(SUP RN,ALG) stALG := exp(oddlambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG) stSUP := map(lift,stALG)$ST2(ALG,SUP RN) stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP) series map(reduce,stUP)$ST2(UP,Coef) generalInfiniteProduct(x,a,d) == stUP := map(lift,coefficients x)$ST2(Coef,UP) stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN) stALG := map(reduce,stSUP)$ST2(SUP RN,ALG) stALG := generalLambert(log(stALG)$STF(ALG),a,d)$STT(ALG) stALG := exp(stALG)$STF(ALG) stSUP := map(lift,stALG)$ST2(ALG,SUP RN) stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP) series map(reduce,stUP)$ST2(UP,Coef) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package STINPROD StreamInfiniteProduct>> <<package INFPROD0 InfiniteProductCharacteristicZero>> <<package INPRODPF InfiniteProductPrimeField>> <<package INPRODFF InfiniteProductFiniteField>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}