\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra indexedp.spad} \author{James Davenport} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{category IDPC IndexedDirectProductCategory} <<category IDPC IndexedDirectProductCategory>>= )abbrev category IDPC IndexedDirectProductCategory ++ Author: James Davenport ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This category represents the direct product of some set with ++ respect to an ordered indexing set. IndexedDirectProductCategory(A:SetCategory,S:OrderedSet): Category == SetCategory with map: (A -> A, %) -> % ++ map(f,z) returns the new element created by applying the ++ function f to each component of the direct product element z. monomial: (A, S) -> % ++ monomial(a,s) constructs a direct product element with the s ++ component set to \spad{a} leadingCoefficient: % -> A ++ leadingCoefficient(z) returns the coefficient of the leading ++ (with respect to the ordering on the indexing set) ++ monomial of z. ++ Error: if z has no support. leadingSupport: % -> S ++ leadingSupport(z) returns the index of leading ++ (with respect to the ordering on the indexing set) monomial of z. ++ Error: if z has no support. reductum: % -> % ++ reductum(z) returns a new element created by removing the ++ leading coefficient/support pair from the element z. ++ Error: if z has no support. @ \section{domain IDPO IndexedDirectProductObject} <<domain IDPO IndexedDirectProductObject>>= )abbrev domain IDPO IndexedDirectProductObject ++ Indexed direct products of objects over a set \spad{A} ++ of generators indexed by an ordered set S. All items have finite support. IndexedDirectProductObject(A:SetCategory,S:OrderedSet): IndexedDirectProductCategory(A,S) == add --representations Term:= Record(k:S,c:A) Rep:= List Term --declarations x,y: % f: A -> A s: S --define x = y == while not null x and not null y repeat x.first.k ~= y.first.k => return false x.first.c ~= y.first.c => return false x:=x.rest y:=y.rest null x and null y coerce(x:%):OutputForm == bracket [rarrow(t.k :: OutputForm, t.c :: OutputForm) for t in x] -- sample():% == [[sample()$S,sample()$A]$Term]$Rep monomial(r,s) == [[s,r]] map(f,x) == [[tm.k,f(tm.c)] for tm in x] reductum x == rest x leadingCoefficient x == null x => error "Can't take leadingCoefficient of empty product element" x.first.c leadingSupport x == null x => error "Can't take leadingCoefficient of empty product element" x.first.k @ \section{domain IDPAM IndexedDirectProductAbelianMonoid} <<domain IDPAM IndexedDirectProductAbelianMonoid>>= )abbrev domain IDPAM IndexedDirectProductAbelianMonoid ++ Indexed direct products of abelian monoids over an abelian monoid \spad{A} of ++ generators indexed by the ordered set S. All items have finite support. ++ Only non-zero terms are stored. IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet): Join(AbelianMonoid,IndexedDirectProductCategory(A,S)) == IndexedDirectProductObject(A,S) add --representations Term:= Record(k:S,c:A) Rep:= List Term x,y: % r: A n: NonNegativeInteger f: A -> A s: S 0 == [] zero? x == null x -- PERFORMANCE CRITICAL; Should build list up -- by merging 2 sorted lists. Doing this will -- avoid the recursive calls (very useful if there is a -- large number of vars in a polynomial. -- x + y == -- null x => y -- null y => x -- y.first.k > x.first.k => cons(y.first,(x + y.rest)) -- x.first.k > y.first.k => cons(x.first,(x.rest + y)) -- r:= x.first.c + y.first.c -- r = 0 => x.rest + y.rest -- cons([x.first.k,r],(x.rest + y.rest)) qsetrest!: (Rep, Rep) -> Rep qsetrest!(l: Rep, e: Rep): Rep == RPLACD(l, e)$Lisp x + y == null x => y null y => x endcell: Rep := empty() res: Rep := empty() while not empty? x and not empty? y repeat newcell := empty() if x.first.k = y.first.k then r:= x.first.c + y.first.c if not zero? r then newcell := cons([x.first.k, r], empty()) x := rest x y := rest y else if x.first.k > y.first.k then newcell := cons(x.first, empty()) x := rest x else newcell := cons(y.first, empty()) y := rest y if not empty? newcell then if not empty? endcell then qsetrest!(endcell, newcell) endcell := newcell else res := newcell; endcell := res end := empty? x => y x if empty? res then res := end else qsetrest!(endcell, end) res n * x == n = 0 => 0 n = 1 => x [[u.k,a] for u in x | (a:=n*u.c) ~= 0$A] monomial(r,s) == (r = 0 => 0; [[s,r]]) map(f,x) == [[tm.k,a] for tm in x | (a:=f(tm.c)) ~= 0$A] reductum x == (null x => 0; rest x) leadingCoefficient x == (null x => 0; x.first.c) @ \section{domain IDPOAM IndexedDirectProductOrderedAbelianMonoid} <<domain IDPOAM IndexedDirectProductOrderedAbelianMonoid>>= )abbrev domain IDPOAM IndexedDirectProductOrderedAbelianMonoid ++ Indexed direct products of ordered abelian monoids \spad{A} of ++ generators indexed by the ordered set S. ++ The inherited order is lexicographical. ++ All items have finite support: only non-zero terms are stored. IndexedDirectProductOrderedAbelianMonoid(A:OrderedAbelianMonoid,S:OrderedSet): Join(OrderedAbelianMonoid,IndexedDirectProductCategory(A,S)) == IndexedDirectProductAbelianMonoid(A,S) add --representations Term:= Record(k:S,c:A) Rep:= List Term x,y: % x<y == empty? y => false empty? x => true -- note careful order of these two lines y.first.k > x.first.k => true y.first.k < x.first.k => false y.first.c > x.first.c => true y.first.c < x.first.c => false x.rest < y.rest @ \section{domain IDPOAMS IndexedDirectProductOrderedAbelianMonoidSup} <<domain IDPOAMS IndexedDirectProductOrderedAbelianMonoidSup>>= )abbrev domain IDPOAMS IndexedDirectProductOrderedAbelianMonoidSup ++ Indexed direct products of ordered abelian monoid sups \spad{A}, ++ generators indexed by the ordered set S. ++ All items have finite support: only non-zero terms are stored. IndexedDirectProductOrderedAbelianMonoidSup(A:OrderedAbelianMonoidSup,S:OrderedSet): Join(OrderedAbelianMonoidSup,IndexedDirectProductCategory(A,S)) == IndexedDirectProductOrderedAbelianMonoid(A,S) add --representations Term:= Record(k:S,c:A) Rep:= List Term x,y: % r: A s: S subtractIfCan(x,y) == empty? y => x empty? x => "failed" x.first.k < y.first.k => "failed" x.first.k > y.first.k => t:= subtractIfCan(x.rest, y) t case "failed" => "failed" cons( x.first, t) u:=subtractIfCan(x.first.c, y.first.c) u case "failed" => "failed" zero? u => subtractIfCan(x.rest, y.rest) t:= subtractIfCan(x.rest, y.rest) t case "failed" => "failed" cons([x.first.k,u],t) sup(x,y) == empty? y => x empty? x => y x.first.k < y.first.k => cons(y.first,sup(x,y.rest)) x.first.k > y.first.k => cons(x.first,sup(x.rest,y)) u:=sup(x.first.c, y.first.c) cons([x.first.k,u],sup(x.rest,y.rest)) @ \section{domain IDPAG IndexedDirectProductAbelianGroup} <<domain IDPAG IndexedDirectProductAbelianGroup>>= )abbrev domain IDPAG IndexedDirectProductAbelianGroup ++ Indexed direct products of abelian groups over an abelian group \spad{A} of ++ generators indexed by the ordered set S. ++ All items have finite support: only non-zero terms are stored. IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedSet): Join(AbelianGroup,IndexedDirectProductCategory(A,S)) == IndexedDirectProductAbelianMonoid(A,S) add --representations Term:= Record(k:S,c:A) Rep:= List Term x,y: % r: A n: Integer f: A -> A s: S -x == [[u.k,-u.c] for u in x] n * x == n = 0 => 0 n = 1 => x [[u.k,a] for u in x | (a:=n*u.c) ~= 0$A] qsetrest!: (Rep, Rep) -> Rep qsetrest!(l: Rep, e: Rep): Rep == RPLACD(l, e)$Lisp x - y == null x => -y null y => x endcell: Rep := empty() res: Rep := empty() while not empty? x and not empty? y repeat newcell := empty() if x.first.k = y.first.k then r:= x.first.c - y.first.c if not zero? r then newcell := cons([x.first.k, r], empty()) x := rest x y := rest y else if x.first.k > y.first.k then newcell := cons(x.first, empty()) x := rest x else newcell := cons([y.first.k,-y.first.c], empty()) y := rest y if not empty? newcell then if not empty? endcell then qsetrest!(endcell, newcell) endcell := newcell else res := newcell; endcell := res end := empty? x => - y x if empty? res then res := end else qsetrest!(endcell, end) res -- x - y == -- empty? x => - y -- empty? y => x -- y.first.k > x.first.k => cons([y.first.k,-y.first.c],(x - y.rest)) -- x.first.k > y.first.k => cons(x.first,(x.rest - y)) -- r:= x.first.c - y.first.c -- r = 0 => x.rest - y.rest -- cons([x.first.k,r],(x.rest - y.rest)) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<category IDPC IndexedDirectProductCategory>> <<domain IDPO IndexedDirectProductObject>> <<domain IDPAM IndexedDirectProductAbelianMonoid>> <<domain IDPOAM IndexedDirectProductOrderedAbelianMonoid>> <<domain IDPOAMS IndexedDirectProductOrderedAbelianMonoidSup>> <<domain IDPAG IndexedDirectProductAbelianGroup>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}