\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra groebsol.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package GROEBSOL GroebnerSolve} <<package GROEBSOL GroebnerSolve>>= )abbrev package GROEBSOL GroebnerSolve ++ Author : P.Gianni, Summer '88, revised November '89 ++ Solve systems of polynomial equations using Groebner bases ++ Total order Groebner bases are computed and then converted to lex ones ++ This package is mostly intended for internal use. GroebnerSolve(lv,F,R) : C == T where R : GcdDomain F : GcdDomain lv : List Symbol NNI ==> NonNegativeInteger I ==> Integer S ==> Symbol OV ==> OrderedVariableList(lv) IES ==> IndexedExponents Symbol DP ==> DirectProduct(#lv,NonNegativeInteger) DPoly ==> DistributedMultivariatePolynomial(lv,F) HDP ==> HomogeneousDirectProduct(#lv,NonNegativeInteger) HDPoly ==> HomogeneousDistributedMultivariatePolynomial(lv,F) SUP ==> SparseUnivariatePolynomial(DPoly) L ==> List P ==> Polynomial C == with groebSolve : (L DPoly,L OV) -> L L DPoly ++ groebSolve(lp,lv) reduces the polynomial system lp in variables lv ++ to triangular form. Algorithm based on groebner bases algorithm ++ with linear algebra for change of ordering. ++ Preprocessing for the general solver. ++ The polynomials in input are of type \spadtype{DMP}. testDim : (L HDPoly,L OV) -> Union(L HDPoly,"failed") ++ testDim(lp,lv) tests if the polynomial system lp ++ in variables lv is zero dimensional. genericPosition : (L DPoly, L OV) -> Record(dpolys:L DPoly, coords: L I) ++ genericPosition(lp,lv) puts a radical zero dimensional ideal ++ in general position, for system lp in variables lv. T == add import Boolean import PolToPol(lv,F) import GroebnerPackage(F,DP,OV,DPoly) import GroebnerInternalPackage(F,DP,OV,DPoly) import GroebnerPackage(F,HDP,OV,HDPoly) import LinGroebnerPackage(lv,F) nv:NNI:=#lv ---- test if f is power of a linear mod (rad lpol) ---- ---- f is monic ---- testPower(uf:SUP,x:OV,lpol:L DPoly) : Union(DPoly,"failed") == df:=degree(uf) trailp:DPoly := coefficient(uf,(df-1)::NNI) (testquo := trailp exquo (df::F)) case "failed" => "failed" trailp := testquo::DPoly gg:=gcd(lc:=leadingCoefficient(uf),trailp) trailp := (trailp exquo gg)::DPoly lc := (lc exquo gg)::DPoly linp:SUP:=monomial(lc,1$NNI)$SUP + monomial(trailp,0$NNI)$SUP g:DPoly:=multivariate(uf-linp**df,x) redPol(g,lpol) ~= 0 => "failed" multivariate(linp,x) -- is the 0-dimensional ideal I in general position ? -- ---- internal function ---- testGenPos(lpol:L DPoly,lvar:L OV):Union(L DPoly,"failed") == rlpol:=reverse lpol f:=rlpol.first #lvar=1 => [f] rlvar:=rest reverse lvar newlpol:List(DPoly):=[f] for f: local in rlpol.rest repeat x:=first rlvar fi:= univariate(f,x) if (mainVariable leadingCoefficient fi case "failed") then if ((g:= testPower(fi,x,newlpol)) case "failed") then return "failed" newlpol :=concat(redPol(g::DPoly,newlpol),newlpol) rlvar:=rest rlvar else if not zero? redPol(f,newlpol) then return"failed" newlpol -- change coordinates and out the ideal in general position ---- genPos(lp:L DPoly,lvar:L OV): Record(polys:L HDPoly, lpolys:L DPoly, coord:L I, univp:HDPoly) == rlvar:=reverse lvar lnp:=[dmpToHdmp(f) for f in lp] x := first rlvar;rlvar:=rest rlvar testfail:=true ranvals: L I gb: L HDPoly gbt: L DPoly gb1: Union(L DPoly,"failed") for count in 1.. while testfail repeat ranvals := [1+(random()$I rem (count*(# lvar))) for vv in rlvar] val:=+/[rv*(vv::HDPoly) for vv in rlvar for rv in ranvals] val:=val+x::HDPoly gb := [elt(univariate(p,x),val) for p in lnp] gb:=groebner gb gbt:=totolex gb (gb1:=testGenPos(gbt,lvar)) case "failed"=>"try again" testfail:=false [gb,gbt,ranvals,dmpToHdmp(last (gb1::L DPoly))] genericPosition(lp:L DPoly,lvar:L OV) == nans:=genPos(lp,lvar) [nans.lpolys, nans.coord] ---- select the univariate factors select(lup:L L HDPoly) : L L HDPoly == lup=[] => list [] [:[cons(f,lsel) for lsel in select lup.rest] for f in lup.first] ---- in the non generic case, we compute the prime ideals ---- ---- associated to leq, basis is the algebra basis ---- findCompon(leq:L HDPoly,lvar:L OV):L L DPoly == teq:=totolex(leq) #teq = #lvar => [teq] -- not ((teq1:=testGenPos(teq,lvar)) case "failed") => [teq1::L DPoly] gp:=genPos(teq,lvar) lgp:= gp.polys g:HDPoly:=gp.univp fg:=(factor g)$GeneralizedMultivariateFactorize(OV,HDP,R,F,HDPoly) lfact:=[ff.factor for ff in factors(fg::Factored(HDPoly))] result: L L HDPoly := [] #lfact=1 => [teq] for tfact in lfact repeat tlfact:=concat(tfact,lgp) result:=concat(tlfact,result) ranvals:L I:=gp.coord rlvar:=reverse lvar x:=first rlvar rlvar:=rest rlvar val:=+/[rv*(vv::HDPoly) for vv in rlvar for rv in ranvals] val:=(x::HDPoly)-val ans:=[totolex groebner [elt(univariate(p,x),val) for p in lp] for lp in result] [ll for ll in ans | ll~=[1]] zeroDim?(lp: List HDPoly,lvar:L OV) : Boolean == empty? lp => false n:NNI := #lvar #lp < n => false lvint1 := lvar for f in lp while not empty?(lvint1) repeat g:= f - reductum f x:=mainVariable(g)::OV if ground?(leadingCoefficient(univariate(g,x))) then lvint1 := remove(x, lvint1) empty? lvint1 -- general solve, gives an error if the system not 0-dimensional groebSolve(leq: L DPoly,lvar:L OV) : L L DPoly == lnp:=[dmpToHdmp(f) for f in leq] leq1:=groebner lnp #(leq1) = 1 and first(leq1) = 1 => list empty() not (zeroDim?(leq1,lvar)) => error "system does not have a finite number of solutions" -- add computation of dimension, for a more useful error basis:=computeBasis(leq1) lup:L HDPoly:=[] llfact:L Factored(HDPoly):=[] for x in lvar repeat g:=minPol(leq1,basis,x) fg:=(factor g)$GeneralizedMultivariateFactorize(OV,HDP,R,F,HDPoly) llfact:=concat(fg::Factored(HDPoly),llfact) if degree(g,x) = #basis then leave "stop factoring" result: L L DPoly := [] -- selecting a factor from the lists of the univariate factors lfact:=select [[ff.factor for ff in factors llf] for llf in llfact] for tfact in lfact repeat tfact:=groebner concat(tfact,leq1) tfact=[1] => "next value" result:=concat(result,findCompon(tfact,lvar)) result -- test if the system is zero dimensional testDim(leq : L HDPoly,lvar : L OV) : Union(L HDPoly,"failed") == leq1:=groebner leq #(leq1) = 1 and first(leq1) = 1 => empty() not (zeroDim?(leq1,lvar)) => "failed" leq1 @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package GROEBSOL GroebnerSolve>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}