\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra gpol.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain LAUPOL LaurentPolynomial} <<domain LAUPOL LaurentPolynomial>>= )abbrev domain LAUPOL LaurentPolynomial ++ Univariate polynomials with negative and positive exponents. ++ Author: Manuel Bronstein ++ Date Created: May 1988 ++ Date Last Updated: 26 Apr 1990 LaurentPolynomial(R, UP): Exports == Implementation where R : IntegralDomain UP: UnivariatePolynomialCategory R O ==> OutputForm B ==> Boolean N ==> NonNegativeInteger Z ==> Integer RF ==> Fraction UP Exports ==> Join(DifferentialExtension UP, IntegralDomain, ConvertibleTo RF, FullyRetractableTo R, RetractableTo UP) with monomial? : % -> B ++ monomial?(x) \undocumented degree : % -> Z ++ degree(x) \undocumented order : % -> Z ++ order(x) \undocumented reductum : % -> % ++ reductum(x) \undocumented leadingCoefficient : % -> R ++ leadingCoefficient \undocumented trailingCoefficient: % -> R ++ trailingCoefficient \undocumented coefficient : (%, Z) -> R ++ coefficient(x,n) \undocumented monomial : (R, Z) -> % ++ monomial(x,n) \undocumented if R has CharacteristicZero then CharacteristicZero if R has CharacteristicNonZero then CharacteristicNonZero if R has Field then EuclideanDomain separate: RF -> Record(polyPart:%, fracPart:RF) ++ separate(x) \undocumented Implementation ==> add Rep := Record(polypart: UP, order0: Z) poly : % -> UP check0 : (Z, UP) -> % mkgpol : (Z, UP) -> % gpol : (UP, Z) -> % toutput: (R, Z, O) -> O monTerm: (R, Z, O) -> O 0 == [0, 0] 1 == [1, 0] p = q == p.order0 = q.order0 and p.polypart = q.polypart poly p == p.polypart order p == p.order0 gpol(p, n) == [p, n] monomial(r, n) == check0(n, r::UP) coerce(p:UP):% == mkgpol(0, p) reductum p == check0(order p, reductum poly p) n:Z * p:% == check0(order p, n * poly p) characteristic == characteristic$R coerce(n:Z):% == n::R::% degree p == degree(poly p)::Z + order p monomial? p == monomial? poly p coerce(r:R):% == gpol(r::UP, 0) convert(p:%):RF == poly(p) * (monomial(1, 1)$UP)::RF ** order p p:% * q:% == check0(order p + order q, poly p * poly q) - p == gpol(- poly p, order p) check0(n, p) == (zero? p => 0; gpol(p, n)) trailingCoefficient p == coefficient(poly p, 0) leadingCoefficient p == leadingCoefficient poly p coerce(p:%):O == zero? p => 0::Z::O l := nil()$List(O) v := monomial(1, 1)$UP :: O while p ~= 0 repeat l := concat(l, toutput(leadingCoefficient p, degree p, v)) p := reductum p reduce("+", l) coefficient(p, n) == negative?(m := n - order p) => 0 coefficient(poly p, m::N) differentiate(p:%, derivation:UP -> UP) == t := monomial(1, 1)$UP mkgpol(order(p) - 1, derivation(poly p) * t + order(p) * poly(p) * derivation t) monTerm(r, n, v) == zero? n => r::O one? n => v v ** (n::O) toutput(r, n, v) == mon := monTerm(r, n, v) zero? n or one? r => mon r = -1 => - mon r::O * mon recip p == (q := recip poly p) case "failed" => "failed" gpol(q::UP, - order p) p + q == zero? q => p zero? p => q positive?(d := order p - order q) => gpol(poly(p) * monomial(1, d::N) + poly q, order q) negative? d => gpol(poly(p) + poly(q) * monomial(1, (-d)::N), order p) mkgpol(order p, poly(p) + poly q) mkgpol(n, p) == zero? p => 0 d := order(p, monomial(1, 1)$UP) gpol((p exquo monomial(1, d))::UP, n + d::Z) p exquo q == (r := poly(p) exquo poly q) case "failed" => "failed" check0(order p - order q, r::UP) retractIfCan(p:%):Union(UP, "failed") == negative? order(p) => error "Not retractable" poly(p) * monomial(1, order(p)::N)$UP retractIfCan(p:%):Union(R, "failed") == order(p) ~= 0 => "failed" retractIfCan poly p if R has Field then gcd(p, q) == gcd(poly p, poly q)::% separate f == n := order(q := denom f, monomial(1, 1)) q := (q exquo (tn := monomial(1, n)$UP))::UP bc := extendedEuclidean(tn,q,numer f)::Record(coef1:UP,coef2:UP) qr := divide(bc.coef1, q) [mkgpol(-n, bc.coef2 + tn * qr.quotient), qr.remainder / q] -- returns (z, r) s.t. p = q z + r, -- and degree(r) < degree(q), order(r) >= min(order(p), order(q)) divide(p, q) == c := min(order p, order q) qr := divide(poly(p) * monomial(1, (order p - c)::N)$UP, poly q) [mkgpol(c - order q, qr.quotient), mkgpol(c, qr.remainder)] euclideanSize p == degree poly p extendedEuclidean(a, b, c) == (bc := extendedEuclidean(poly a, poly b, poly c)) case "failed" => "failed" [mkgpol(order c - order a, bc.coef1), mkgpol(order c - order b, bc.coef2)] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain LAUPOL LaurentPolynomial>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}