\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra ghensel.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package GHENSEL GeneralHenselPackage}
<<package GHENSEL GeneralHenselPackage>>=
)abbrev package GHENSEL GeneralHenselPackage
++ Author : P.Gianni
++ General Hensel Lifting
++ Used for Factorization of bivariate polynomials over a finite field.
GeneralHenselPackage(RP,TP):C == T where
   RP :   EuclideanDomain
   TP :   UnivariatePolynomialCategory RP

   PI ==> PositiveInteger

   C == with
      HenselLift: (TP,List(TP),RP,PI) -> Record(plist:List(TP), modulo:RP)
        ++ HenselLift(pol,lfacts,prime,bound) lifts lfacts, 
        ++ that are the factors of pol mod prime,
        ++ to factors of pol mod prime**k > bound. No recombining is done .

      completeHensel: (TP,List(TP),RP,PI) -> List TP
        ++ completeHensel(pol,lfact,prime,bound) lifts lfact, 
        ++ the factorization mod prime of pol,
        ++ to the factorization mod prime**k>bound. 
        ++ Factors are recombined on the way.
  
      reduction     :  (TP,RP)  ->  TP 
        ++ reduction(u,pol) computes the symmetric reduction of u mod pol

   T == add
     GenExEuclid: (List(FP),List(FP),FP) -> List(FP)
     HenselLift1: (TP,List(TP),List(FP),List(FP),RP,RP,F) -> List(TP)
     mQuo: (TP,RP) -> TP

     reduceCoef(c:RP,p:RP):RP ==
        zero? p => c
        RP is Integer => symmetricRemainder(c,p)
        c rem p

     reduction(u:TP,p:RP):TP ==
        zero? p => u
        RP is Integer => map(symmetricRemainder(#1,p),u)
        map(#1 rem p,u)

     merge(p:RP,q:RP):Union(RP,"failed") ==
         p = q => p
         p = 0 => q
         q = 0 => p
         "failed"

     modInverse(c:RP,p:RP):RP ==
        (extendedEuclidean(c,p,1)::Record(coef1:RP,coef2:RP)).coef1

     exactquo(u:TP,v:TP,p:RP):Union(TP,"failed") ==
        invlcv:=modInverse(leadingCoefficient v,p)
        r:=monicDivide(u,reduction(invlcv*v,p))
        reduction(r.remainder,p) ^=0 => "failed"
        reduction(invlcv*r.quotient,p)

     FP:=EuclideanModularRing(RP,TP,RP,reduction,merge,exactquo)

     mQuo(poly:TP,n:RP) : TP == map(#1 quo n,poly)

     GenExEuclid(fl:List FP,cl:List FP,rhs:FP) :List FP ==
        [clp*rhs rem flp for clp in cl for flp in fl]

     -- generate the possible factors
     genFact(fln:List TP,factlist:List List TP) : List List TP ==
       factlist=[] => [[pol] for pol in fln]
       maxd := +/[degree f for f in fln] quo 2
       auxfl:List List TP := []
       for poly in fln while factlist^=[] repeat
         factlist := [term for term in factlist | ^member?(poly,term)]
         dp := degree poly
         for term in factlist repeat
           (+/[degree f for f in term]) + dp > maxd => "next term"
           auxfl := cons(cons(poly,term),auxfl)
       auxfl

     HenselLift1(poly:TP,fln:List TP,fl1:List FP,cl1:List FP,
                 prime:RP,Modulus:RP,cinv:RP):List TP ==
        lcp := leadingCoefficient poly
        rhs := reduce(mQuo(poly - lcp * */fln,Modulus),prime)
        zero? rhs => fln
        lcinv:=reduce(cinv::TP,prime)
        vl := GenExEuclid(fl1,cl1,lcinv*rhs)
        [flp + Modulus*(vlp::TP) for flp in fln for vlp in vl]

     HenselLift(poly:TP,tl1:List TP,prime:RP,bound:PI) ==
        -- convert tl1
        constp:TP:=0
        if degree first tl1 = 0 then
           constp:=tl1.first
           tl1 := rest tl1
        fl1:=[reduce(ttl,prime) for ttl in tl1]
        cl1 := multiEuclidean(fl1,1)::List FP
        Modulus:=prime
        fln :List TP := [ffl1::TP for ffl1 in fl1]
        lcinv:RP:=retract((inv
                  (reduce((leadingCoefficient poly)::TP,prime)))::TP)
        while euclideanSize(Modulus)<bound repeat
           nfln:=HenselLift1(poly,fln,fl1,cl1,prime,Modulus,lcinv)
           fln = nfln and zero?(err:=poly-*/fln) => leave "finished"
           fln := nfln
           Modulus := prime*Modulus
        if constp^=0 then fln:=cons(constp,fln)
        [fln,Modulus]

     completeHensel(m:TP,tl1:List TP,prime:RP,bound:PI) ==
      hlift:=HenselLift(m,tl1,prime,bound)
      Modulus:RP:=hlift.modulo
      fln:List TP:=hlift.plist
      nm := degree m
      u:Union(TP,"failed")
      aux,auxl,finallist:List TP
      auxfl,factlist:List List TP
      factlist := []
      dfn :NonNegativeInteger := nm
      lcm1 := leadingCoefficient m
      mm := lcm1*m
      while dfn>0 and (factlist := genFact(fln,factlist))^=[] repeat
        auxfl := []
        while factlist^=[] repeat
          auxl := factlist.first
          factlist := factlist.rest
          tc := reduceCoef((lcm1 * */[coefficient(poly,0)
                          for poly in auxl]), Modulus)
          coefficient(mm,0) exquo tc case "failed" =>
            auxfl := cons(auxl,auxfl)
          pol := */[poly for poly in auxl]
          poly :=reduction(lcm1*pol,Modulus)
          u := mm exquo poly
          u case "failed"  => auxfl := cons(auxl,auxfl)
          poly1: TP := primitivePart poly
          m := mQuo((u::TP),leadingCoefficient poly1)
          lcm1 := leadingCoefficient(m)
          mm := lcm1*m
          finallist := cons(poly1,finallist)
          dfn := degree m
          aux := []
          for poly in fln repeat
            ^member?(poly,auxl) => aux := cons(poly,aux)
            auxfl := [term for term in auxfl | ^member?(poly,term)]
            factlist := [term for term in factlist |^member?(poly,term)]
          fln := aux
        factlist := auxfl
      if dfn > 0 then finallist := cons(m,finallist)
      finallist

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package GHENSEL GeneralHenselPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}