\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra genups.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package GENUPS GenerateUnivariatePowerSeries} <<package GENUPS GenerateUnivariatePowerSeries>>= )abbrev package GENUPS GenerateUnivariatePowerSeries ++ Author: Clifton J. Williamson ++ Date Created: 29 April 1990 ++ Date Last Updated: 31 May 1990 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: series, Taylor, Laurent, Puiseux ++ Examples: ++ References: ++ Description: ++ \spadtype{GenerateUnivariatePowerSeries} provides functions that create ++ power series from explicit formulas for their \spad{n}th coefficient. GenerateUnivariatePowerSeries(R,FE): Exports == Implementation where R : Join(IntegralDomain,OrderedSet,RetractableTo Integer,_ LinearlyExplicitRingOver Integer) FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_ FunctionSpace R) ANY1 ==> AnyFunctions1 EQ ==> Equation I ==> Integer NNI ==> NonNegativeInteger RN ==> Fraction Integer SEG ==> UniversalSegment ST ==> Stream SY ==> Symbol UTS ==> UnivariateTaylorSeries ULS ==> UnivariateLaurentSeries UPXS ==> UnivariatePuiseuxSeries Exports ==> with taylor: (I -> FE,EQ FE) -> Any ++ \spad{taylor(n +-> a(n),x = a)} returns ++ \spad{sum(n = 0..,a(n)*(x-a)**n)}. taylor: (FE,SY,EQ FE) -> Any ++ \spad{taylor(a(n),n,x = a)} returns \spad{sum(n = 0..,a(n)*(x-a)**n)}. taylor: (I -> FE,EQ FE,SEG NNI) -> Any ++ \spad{taylor(n +-> a(n),x = a,n0..)} returns ++ \spad{sum(n=n0..,a(n)*(x-a)**n)}; ++ \spad{taylor(n +-> a(n),x = a,n0..n1)} returns ++ \spad{sum(n = n0..,a(n)*(x-a)**n)}. taylor: (FE,SY,EQ FE,SEG NNI) -> Any ++ \spad{taylor(a(n),n,x = a,n0..)} returns ++ \spad{sum(n = n0..,a(n)*(x-a)**n)}; ++ \spad{taylor(a(n),n,x = a,n0..n1)} returns ++ \spad{sum(n = n0..,a(n)*(x-a)**n)}. laurent: (I -> FE,EQ FE,SEG I) -> Any ++ \spad{laurent(n +-> a(n),x = a,n0..)} returns ++ \spad{sum(n = n0..,a(n) * (x - a)**n)}; ++ \spad{laurent(n +-> a(n),x = a,n0..n1)} returns ++ \spad{sum(n = n0..n1,a(n) * (x - a)**n)}. laurent: (FE,SY,EQ FE,SEG I) -> Any ++ \spad{laurent(a(n),n,x=a,n0..)} returns ++ \spad{sum(n = n0..,a(n) * (x - a)**n)}; ++ \spad{laurent(a(n),n,x=a,n0..n1)} returns ++ \spad{sum(n = n0..n1,a(n) * (x - a)**n)}. puiseux: (RN -> FE,EQ FE,SEG RN,RN) -> Any ++ \spad{puiseux(n +-> a(n),x = a,r0..,r)} returns ++ \spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; ++ \spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns ++ \spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}. puiseux: (FE,SY,EQ FE,SEG RN,RN) -> Any ++ \spad{puiseux(a(n),n,x = a,r0..,r)} returns ++ \spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; ++ \spad{puiseux(a(n),n,x = a,r0..r1,r)} returns ++ \spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}. series: (I -> FE,EQ FE) -> Any ++ \spad{series(n +-> a(n),x = a)} returns ++ \spad{sum(n = 0..,a(n)*(x-a)**n)}. series: (FE,SY,EQ FE) -> Any ++ \spad{series(a(n),n,x = a)} returns ++ \spad{sum(n = 0..,a(n)*(x-a)**n)}. series: (I -> FE,EQ FE,SEG I) -> Any ++ \spad{series(n +-> a(n),x = a,n0..)} returns ++ \spad{sum(n = n0..,a(n) * (x - a)**n)}; ++ \spad{series(n +-> a(n),x = a,n0..n1)} returns ++ \spad{sum(n = n0..n1,a(n) * (x - a)**n)}. series: (FE,SY,EQ FE,SEG I) -> Any ++ \spad{series(a(n),n,x=a,n0..)} returns ++ \spad{sum(n = n0..,a(n) * (x - a)**n)}; ++ \spad{series(a(n),n,x=a,n0..n1)} returns ++ \spad{sum(n = n0..n1,a(n) * (x - a)**n)}. series: (RN -> FE,EQ FE,SEG RN,RN) -> Any ++ \spad{series(n +-> a(n),x = a,r0..,r)} returns ++ \spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; ++ \spad{series(n +-> a(n),x = a,r0..r1,r)} returns ++ \spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}. series: (FE,SY,EQ FE,SEG RN,RN) -> Any ++ \spad{series(a(n),n,x = a,r0..,r)} returns ++ \spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; ++ \spad{series(a(n),n,x = a,r0..r1,r)} returns ++ \spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}. Implementation ==> add genStream: (I -> FE,I) -> ST FE genStream(f,n) == delay concat(f(n),genStream(f,n + 1)) genFiniteStream: (I -> FE,I,I) -> ST FE genFiniteStream(f,n,m) == delay n > m => empty() concat(f(n),genFiniteStream(f,n + 1,m)) taylor(f,eq) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq coerce(series(genStream(f,0))$UTS(FE,x,a))$ANY1(UTS(FE,x,a)) taylor(an:FE,n:SY,eq:EQ FE) == taylor(eval(an,(n :: FE) = (#1 :: FE)),eq) taylor(f:I -> FE,eq:EQ FE,seg:SEG NNI) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq hasHi seg => n0 := lo seg; n1 := hi seg if n1 < n0 then (n0,n1) := (n1,n0) uts := series(genFiniteStream(f,n0,n1))$UTS(FE,x,a) uts := uts * monomial(1,n0)$UTS(FE,x,a) coerce(uts)$ANY1(UTS(FE,x,a)) n0 := lo seg uts := series(genStream(f,n0))$UTS(FE,x,a) uts := uts * monomial(1,n0)$UTS(FE,x,a) coerce(uts)$ANY1(UTS(FE,x,a)) taylor(an,n,eq,seg) == taylor(eval(an,(n :: FE) = (#1 :: FE)),eq,seg) laurent(f,eq,seg) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq hasHi seg => n0 := lo seg; n1 := hi seg if n1 < n0 then (n0,n1) := (n1,n0) uts := series(genFiniteStream(f,n0,n1))$UTS(FE,x,a) coerce(laurent(n0,uts)$ULS(FE,x,a))$ANY1(ULS(FE,x,a)) n0 := lo seg uts := series(genStream(f,n0))$UTS(FE,x,a) coerce(laurent(n0,uts)$ULS(FE,x,a))$ANY1(ULS(FE,x,a)) laurent(an,n,eq,seg) == laurent(eval(an,(n :: FE) = (#1 :: FE)),eq,seg) modifyFcn:(RN -> FE,I,I,I,I) -> FE modifyFcn(f,n0,nn,q,m) == (zero?((m - n0) rem nn) => f(m/q); 0) puiseux(f,eq,seg,r) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "puiseux: left hand side must be a variable" x := xx :: SY; a := rhs eq not positive? r => error "puiseux: last argument must be positive" hasHi seg => r0 := lo seg; r1 := hi seg if r1 < r0 then (r0,r1) := (r1,r0) p0 := numer r0; q0 := denom r0 p1 := numer r1; q1 := denom r1 p2 := numer r; q2 := denom r q := lcm(lcm(q0,q1),q2) n0 := p0 * (q quo q0); n1 := p1 * (q quo q1) nn := p2 * (q quo q2) ulsUnion := laurent(modifyFcn(f,n0,nn,q,#1),eq,segment(n0,n1)) uls := retract(ulsUnion)$ANY1(ULS(FE,x,a)) coerce(puiseux(1/q,uls)$UPXS(FE,x,a))$ANY1(UPXS(FE,x,a)) p0 := numer(r0 := lo seg); q0 := denom r0 p2 := numer r; q2 := denom r q := lcm(q0,q2) n0 := p0 * (q quo q0); nn := p2 * (q quo q2) ulsUnion := laurent(modifyFcn(f,n0,nn,q,#1),eq,segment n0) uls := retract(ulsUnion)$ANY1(ULS(FE,x,a)) coerce(puiseux(1/q,uls)$UPXS(FE,x,a))$ANY1(UPXS(FE,x,a)) puiseux(an,n,eq,r0,m) == puiseux(eval(an,(n :: FE) = (#1 :: FE)),eq,r0,m) series(f:I -> FE,eq:EQ FE) == puiseux(f(numer #1),eq,segment 0,1) series(an:FE,n:SY,eq:EQ FE) == puiseux(an,n,eq,segment 0,1) series(f:I -> FE,eq:EQ FE,seg:SEG I) == ratSeg : SEG RN := map(#1::RN,seg)$UniversalSegmentFunctions2(I,RN) puiseux(f(numer #1),eq,ratSeg,1) series(an:FE,n:SY,eq:EQ FE,seg:SEG I) == ratSeg : SEG RN := map(#1::RN,seg)$UniversalSegmentFunctions2(I,RN) puiseux(an,n,eq,ratSeg,1) series(f:RN -> FE,eq:EQ FE,seg:SEG RN,r:RN) == puiseux(f,eq,seg,r) series(an:FE,n:SY,eq:EQ FE,seg:SEG RN,r:RN) == puiseux(an,n,eq,seg,r) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package GENUPS GenerateUnivariatePowerSeries>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}