\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra generic.spad} \author{Johannes Grabmeier, Robert Wisbauer} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain GCNAALG GenericNonAssociativeAlgebra} <<domain GCNAALG GenericNonAssociativeAlgebra>>= import Fraction import Polynomial import SparseUnivariatePolynomial )abbrev domain GCNAALG GenericNonAssociativeAlgebra ++ Authors: J. Grabmeier, R. Wisbauer ++ Date Created: 26 June 1991 ++ Date Last Updated: 26 June 1991 ++ Basic Operations: generic ++ Related Constructors: AlgebraPackage ++ Also See: ++ AMS Classifications: ++ Keywords: generic element. rank polynomial ++ Reference: ++ A. Woerz-Busekros: Algebra in Genetics ++ Lectures Notes in Biomathematics 36, ++ Springer-Verlag, Heidelberg, 1980 ++ Description: ++ AlgebraGenericElementPackage allows you to create generic elements ++ of an algebra, i.e. the scalars are extended to include symbolic ++ coefficients GenericNonAssociativeAlgebra(R : CommutativeRing, n : PositiveInteger,_ ls : List Symbol, gamma: Vector Matrix R ): public == private where NNI ==> NonNegativeInteger V ==> Vector PR ==> Polynomial R FPR ==> Fraction Polynomial R SUP ==> SparseUnivariatePolynomial S ==> Symbol public ==> Join(FramedNonAssociativeAlgebra(FPR), _ LeftModule(SquareMatrix(n,FPR)) ) with coerce : Vector FPR -> % ++ coerce(v) assumes that it is called with a vector ++ of length equal to the dimension of the algebra, then ++ a linear combination with the basis element is formed leftUnits:() -> Union(Record(particular: %, basis: List %), "failed") ++ leftUnits() returns the affine space of all left units of the ++ algebra, or \spad{"failed"} if there is none rightUnits:() -> Union(Record(particular: %, basis: List %), "failed") ++ rightUnits() returns the affine space of all right units of the ++ algebra, or \spad{"failed"} if there is none generic : () -> % ++ generic() returns a generic element, i.e. the linear combination ++ of the fixed basis with the symbolic coefficients ++ \spad{%x1,%x2,..} generic : Symbol -> % ++ generic(s) returns a generic element, i.e. the linear combination ++ of the fixed basis with the symbolic coefficients ++ \spad{s1,s2,..} generic : Vector Symbol -> % ++ generic(vs) returns a generic element, i.e. the linear combination ++ of the fixed basis with the symbolic coefficients ++ \spad{vs}; ++ error, if the vector of symbols is too short generic : Vector % -> % ++ generic(ve) returns a generic element, i.e. the linear combination ++ of \spad{ve} basis with the symbolic coefficients ++ \spad{%x1,%x2,..} generic : (Symbol, Vector %) -> % ++ generic(s,v) returns a generic element, i.e. the linear combination ++ of v with the symbolic coefficients ++ \spad{s1,s2,..} generic : (Vector Symbol, Vector %) -> % ++ generic(vs,ve) returns a generic element, i.e. the linear combination ++ of \spad{ve} with the symbolic coefficients \spad{vs} ++ error, if the vector of symbols is shorter than the vector of ++ elements if R has IntegralDomain then leftRankPolynomial : () -> SparseUnivariatePolynomial FPR ++ leftRankPolynomial() returns the left minimimal polynomial ++ of the generic element genericLeftMinimalPolynomial : % -> SparseUnivariatePolynomial FPR ++ genericLeftMinimalPolynomial(a) substitutes the coefficients ++ of {em a} for the generic coefficients in ++ \spad{leftRankPolynomial()} genericLeftTrace : % -> FPR ++ genericLeftTrace(a) substitutes the coefficients ++ of \spad{a} for the generic coefficients into the ++ coefficient of the second highest term in ++ \spadfun{leftRankPolynomial} and changes the sign. ++ This is a linear form genericLeftNorm : % -> FPR ++ genericLeftNorm(a) substitutes the coefficients ++ of \spad{a} for the generic coefficients into the ++ coefficient of the constant term in \spadfun{leftRankPolynomial} ++ and changes the sign if the degree of this polynomial is odd. ++ This is a form of degree k rightRankPolynomial : () -> SparseUnivariatePolynomial FPR ++ rightRankPolynomial() returns the right minimimal polynomial ++ of the generic element genericRightMinimalPolynomial : % -> SparseUnivariatePolynomial FPR ++ genericRightMinimalPolynomial(a) substitutes the coefficients ++ of \spad{a} for the generic coefficients in ++ \spadfun{rightRankPolynomial} genericRightTrace : % -> FPR ++ genericRightTrace(a) substitutes the coefficients ++ of \spad{a} for the generic coefficients into the ++ coefficient of the second highest term in ++ \spadfun{rightRankPolynomial} and changes the sign genericRightNorm : % -> FPR ++ genericRightNorm(a) substitutes the coefficients ++ of \spad{a} for the generic coefficients into the ++ coefficient of the constant term in \spadfun{rightRankPolynomial} ++ and changes the sign if the degree of this polynomial is odd genericLeftTraceForm : (%,%) -> FPR ++ genericLeftTraceForm (a,b) is defined to be ++ \spad{genericLeftTrace (a*b)}, this defines ++ a symmetric bilinear form on the algebra genericLeftDiscriminant: () -> FPR ++ genericLeftDiscriminant() is the determinant of the ++ generic left trace forms of all products of basis element, ++ if the generic left trace form is associative, an algebra ++ is separable if the generic left discriminant is invertible, ++ if it is non-zero, there is some ring extension which ++ makes the algebra separable genericRightTraceForm : (%,%) -> FPR ++ genericRightTraceForm (a,b) is defined to be ++ \spadfun{genericRightTrace (a*b)}, this defines ++ a symmetric bilinear form on the algebra genericRightDiscriminant: () -> FPR ++ genericRightDiscriminant() is the determinant of the ++ generic left trace forms of all products of basis element, ++ if the generic left trace form is associative, an algebra ++ is separable if the generic left discriminant is invertible, ++ if it is non-zero, there is some ring extension which ++ makes the algebra separable conditionsForIdempotents: Vector % -> List Polynomial R ++ conditionsForIdempotents([v1,...,vn]) determines a complete list ++ of polynomial equations for the coefficients of idempotents ++ with respect to the \spad{R}-module basis \spad{v1},...,\spad{vn} conditionsForIdempotents: () -> List Polynomial R ++ conditionsForIdempotents() determines a complete list ++ of polynomial equations for the coefficients of idempotents ++ with respect to the fixed \spad{R}-module basis private ==> AlgebraGivenByStructuralConstants(FPR,n,ls,_ coerce(gamma)$CoerceVectorMatrixPackage(R) ) add listOfNumbers : List String := [STRINGIMAGE(q)$Lisp for q in 1..n] symbolsForCoef : V Symbol := [concat("%", concat("x", i))::Symbol for i in listOfNumbers] genericElement : % := v : Vector PR := [monomial(1$PR, [symbolsForCoef.i],[1]) for i in 1..n] convert map(coerce,v)$VectorFunctions2(PR,FPR) eval : (FPR, %) -> FPR eval(rf,a) == -- for the moment we only substitute the numerators -- of the coefficients coefOfa : List PR := map(numer, entries coordinates a)$ListFunctions2(FPR,PR) ls : List PR :=[monomial(1$PR, [s],[1]) for s in entries symbolsForCoef] lEq : List Equation PR := [] for i in 1..maxIndex ls repeat lEq := cons(equation(ls.i,coefOfa.i)$Equation(PR) , lEq) top : PR := eval(numer(rf),lEq)$PR bot : PR := eval(numer(rf),lEq)$PR top/bot if R has IntegralDomain then genericLeftTraceForm(a,b) == genericLeftTrace(a*b) genericLeftDiscriminant() == listBasis : List % := entries basis()$% m : Matrix FPR := matrix [[genericLeftTraceForm(a,b) for a in listBasis] for b in listBasis] determinant m genericRightTraceForm(a,b) == genericRightTrace(a*b) genericRightDiscriminant() == listBasis : List % := entries basis()$% m : Matrix FPR := matrix [[genericRightTraceForm(a,b) for a in listBasis] for b in listBasis] determinant m leftRankPoly : SparseUnivariatePolynomial FPR := 0 initLeft? : Boolean :=true initializeLeft: () -> Void initializeLeft() == -- reset initialize flag initLeft?:=false leftRankPoly := leftMinimalPolynomial genericElement void()$Void rightRankPoly : SparseUnivariatePolynomial FPR := 0 initRight? : Boolean :=true initializeRight: () -> Void initializeRight() == -- reset initialize flag initRight?:=false rightRankPoly := rightMinimalPolynomial genericElement void()$Void leftRankPolynomial(): SparseUnivariatePolynomial FPR == if initLeft? then initializeLeft() leftRankPoly rightRankPolynomial(): SparseUnivariatePolynomial FPR == if initRight? then initializeRight() rightRankPoly genericLeftMinimalPolynomial a == if initLeft? then initializeLeft() map(eval(#1,a),leftRankPoly)$SUP(FPR) genericRightMinimalPolynomial a == if initRight? then initializeRight() map(eval(#1,a),rightRankPoly)$SUP(FPR) genericLeftTrace a == if initLeft? then initializeLeft() d1 : NNI := (degree leftRankPoly - 1) :: NNI rf : FPR := coefficient(leftRankPoly, d1) rf := eval(rf,a) - rf genericRightTrace a == if initRight? then initializeRight() d1 : NNI := (degree rightRankPoly - 1) :: NNI rf : FPR := coefficient(rightRankPoly, d1) rf := eval(rf,a) - rf genericLeftNorm a == if initLeft? then initializeLeft() rf : FPR := coefficient(leftRankPoly, 1) if odd? degree leftRankPoly then rf := - rf rf genericRightNorm a == if initRight? then initializeRight() rf : FPR := coefficient(rightRankPoly, 1) if odd? degree rightRankPoly then rf := - rf rf conditionsForIdempotents(b: V %) : List Polynomial R == x : % := generic(b) map(numer,entries coordinates(x*x-x,b))$ListFunctions2(FPR,PR) conditionsForIdempotents(): List Polynomial R == x : % := genericElement map(numer,entries coordinates(x*x-x))$ListFunctions2(FPR,PR) generic() == genericElement generic(vs:V S, ve: V %): % == maxIndex v > maxIndex ve => error "generic: too little symbols" v : Vector PR := [monomial(1$PR, [vs.i],[1]) for i in 1..maxIndex ve] represents(map(coerce,v)$VectorFunctions2(PR,FPR),ve) generic(s: S, ve: V %): % == lON : List String := [STRINGIMAGE(q)$Lisp for q in 1..maxIndex ve] sFC : Vector Symbol := [concat(s pretend String, i)::Symbol for i in lON] generic(sFC, ve) generic(ve : V %) == lON : List String := [STRINGIMAGE(q)$Lisp for q in 1..maxIndex ve] sFC : Vector Symbol := [concat("%", concat("x", i))::Symbol for i in lON] v : Vector PR := [monomial(1$PR, [sFC.i],[1]) for i in 1..maxIndex ve] represents(map(coerce,v)$VectorFunctions2(PR,FPR),ve) generic(vs:V S): % == generic(vs, basis()$%) generic(s: S): % == generic(s, basis()$%) )fin -- variations on eval --coefOfa : List FPR := entries coordinates a --ls : List Symbol := entries symbolsForCoef -- a very dangerous sequential implementation for the moment, -- because the compiler doesn't manage the parallel code -- also doesn't run: -- not known that (Fraction (Polynomial R)) has (has (Polynomial R) -- (Evalable (Fraction (Polynomial R)))) --res : FPR := rf --for eq in lEq repeat res := eval(res,eq)$FPR --res --rf --eval(rf, le)$FPR --eval(rf, entries symbolsForCoef, coefOfa)$FPR --eval(rf, ls, coefOfa)$FPR --le : List Equation PR := [equation(lh,rh) for lh in ls for rh in coefOfa] @ \section{package CVMP CoerceVectorMatrixPackage} <<package CVMP CoerceVectorMatrixPackage>>= )abbrev package CVMP CoerceVectorMatrixPackage ++ Authors: J. Grabmeier ++ Date Created: 26 June 1991 ++ Date Last Updated: 26 June 1991 ++ Basic Operations: coerceP, coerce ++ Related Constructors: GenericNonAssociativeAlgebra ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Reference: ++ Description: ++ CoerceVectorMatrixPackage: an unexposed, technical package ++ for data conversions CoerceVectorMatrixPackage(R : CommutativeRing): public == private where M2P ==> MatrixCategoryFunctions2(R, Vector R, Vector R, Matrix R, _ Polynomial R, Vector Polynomial R, Vector Polynomial R, Matrix Polynomial R) M2FP ==> MatrixCategoryFunctions2(R, Vector R, Vector R, Matrix R, _ Fraction Polynomial R, Vector Fraction Polynomial R, _ Vector Fraction Polynomial R, Matrix Fraction Polynomial R) public ==> with coerceP: Vector Matrix R -> Vector Matrix Polynomial R ++ coerceP(v) coerces a vector v with entries in \spadtype{Matrix R} ++ as vector over \spadtype{Matrix Polynomial R} coerce: Vector Matrix R -> Vector Matrix Fraction Polynomial R ++ coerce(v) coerces a vector v with entries in \spadtype{Matrix R} ++ as vector over \spadtype{Matrix Fraction Polynomial R} private ==> add imbedFP : R -> Fraction Polynomial R imbedFP r == (r:: Polynomial R) :: Fraction Polynomial R imbedP : R -> Polynomial R imbedP r == (r:: Polynomial R) coerceP(g:Vector Matrix R) : Vector Matrix Polynomial R == m2 : Matrix Polynomial R lim : List Matrix R := entries g l: List Matrix Polynomial R := [] for m in lim repeat m2 := map(imbedP,m)$M2P l := cons(m2,l) vector reverse l coerce(g:Vector Matrix R) : Vector Matrix Fraction Polynomial R == m3 : Matrix Fraction Polynomial R lim : List Matrix R := entries g l: List Matrix Fraction Polynomial R := [] for m in lim repeat m3 := map(imbedFP,m)$M2FP l := cons(m3,l) vector reverse l @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain GCNAALG GenericNonAssociativeAlgebra>> <<package CVMP CoerceVectorMatrixPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}