\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra geneez.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package GENEEZ GenExEuclid} <<package GENEEZ GenExEuclid>>= )abbrev package GENEEZ GenExEuclid ++ Author : P.Gianni. ++ January 1990 ++ The equation \spad{Af+Bg=h} and its generalization to n polynomials ++ is solved for solutions over the R, euclidean domain. ++ A table containing the solutions of \spad{Af+Bg=x**k} is used. ++ The operations are performed modulus a prime which are in principle big enough, ++ but the solutions are tested and, in case of failure, a hensel ++ lifting process is used to get to the right solutions. ++ It will be used in the factorization of multivariate polynomials ++ over finite field, with \spad{R=F[x]}. GenExEuclid(R,BP) : C == T where R : EuclideanDomain PI ==> PositiveInteger NNI ==> NonNegativeInteger BP : UnivariatePolynomialCategory R L ==> List C == with reduction: (BP,R) -> BP ++ reduction(p,prime) reduces the polynomial p modulo prime of R. ++ Note: this function is exported only because it's conditional. compBound: (BP,L BP) -> NNI ++ compBound(p,lp) ++ computes a bound for the coefficients of the solution ++ polynomials. ++ Given a polynomial right hand side p, and a list lp of left hand side polynomials. ++ Exported because it depends on the valuation. tablePow : (NNI,R,L BP) -> Union(Vector(L BP),"failed") ++ tablePow(maxdeg,prime,lpol) constructs the table with the ++ coefficients of the Extended Euclidean Algorithm for lpol. ++ Here the right side is \spad{x**k}, for k less or equal to maxdeg. ++ The operation returns "failed" when the elements are not coprime modulo prime. solveid : (BP,R,Vector L BP) -> Union(L BP,"failed") ++ solveid(h,table) computes the coefficients of the ++ extended euclidean algorithm for a list of polynomials ++ whose tablePow is table and with right side h. testModulus : (R, L BP) -> Boolean ++ testModulus(p,lp) returns true if the the prime p ++ is valid for the list of polynomials lp, i.e. preserves ++ the degree and they remain relatively prime. T == add if R has multiplicativeValuation then compBound(m:BP,listpolys:L BP) : NNI == ldeg:=[degree f for f in listpolys] n:NNI:= (+/[df for df in ldeg]) normlist:=[ +/[euclideanSize(u)**2 for u in coefficients f] for f in listpolys] nm:= +/[euclideanSize(u)**2 for u in coefficients m] normprod := */[g**((n-df)::NNI) for g in normlist for df in ldeg] 2*(approxSqrt(normprod * nm)$IntegerRoots(Integer))::NNI else if R has additiveValuation then -- a fairly crude Hadamard-style bound for the solution -- based on regarding the problem as a system of linear equations. compBound(m:BP,listpolys:L BP) : NNI == "max"/[euclideanSize u for u in coefficients m] + +/["max"/[euclideanSize u for u in coefficients p] for p in listpolys] else compBound(m:BP,listpolys:L BP) : NNI == error "attempt to use compBound without a well-understood valuation" if R has IntegerNumberSystem then reduction(u:BP,p:R):BP == p = 0 => u map(symmetricRemainder(#1,p),u) else reduction(u:BP,p:R):BP == p = 0 => u map(#1 rem p,u) merge(p:R,q:R):Union(R,"failed") == p = q => p p = 0 => q q = 0 => p "failed" modInverse(c:R,p:R):R == (extendedEuclidean(c,p,1)::Record(coef1:R,coef2:R)).coef1 exactquo(u:BP,v:BP,p:R):Union(BP,"failed") == invlcv:=modInverse(leadingCoefficient v,p) r:=monicDivide(u,reduction(invlcv*v,p)) not zero? reduction(r.remainder,p) => "failed" reduction(invlcv*r.quotient,p) FP:=EuclideanModularRing(R,BP,R,reduction,merge,exactquo) --make table global variable! table:Vector L BP import GeneralHenselPackage(R,BP) --local functions makeProducts : L BP -> L BP liftSol: (L BP,BP,R,R,Vector L BP,BP,NNI) -> Union(L BP,"failed") reduceList(lp:L BP,lmod:R): L FP ==[reduce(ff,lmod) for ff in lp] coerceLFP(lf:L FP):L BP == [fm::BP for fm in lf] liftSol(oldsol:L BP,err:BP,lmod:R,lmodk:R, table:Vector L BP,m:BP,bound:NNI):Union(L BP,"failed") == euclideanSize(lmodk) > bound => "failed" d:=degree err ftab:Vector L FP := map(reduceList(#1,lmod),table)$VectorFunctions2(List BP,List FP) sln:L FP:=[0$FP for xx in ftab.1 ] for i in 0 .. d |not zero?(cc:=coefficient(err,i)) repeat sln:=[slp+reduce(cc::BP,lmod)*pp for pp in ftab.(i+1) for slp in sln] nsol:=[f-lmodk*reduction(g::BP,lmod) for f in oldsol for g in sln] lmodk1:=lmod*lmodk nsol:=[reduction(slp,lmodk1) for slp in nsol] lpolys:L BP:=table.(#table) (fs:=+/[f*g for f in lpolys for g in nsol]) = m => nsol a:BP:=((fs-m) exquo lmodk1)::BP liftSol(nsol,a,lmod,lmodk1,table,m,bound) makeProducts(listPol:L BP):L BP == #listPol < 2 => listPol #listPol = 2 => reverse listPol f:= first listPol ll := rest listPol [*/ll,:[f*g for g in makeProducts ll]] testModulus(pmod, listPol) == redListPol := reduceList(listPol, pmod) for pol in listPol for rpol in redListPol repeat degree(pol) ~= degree(rpol::BP) => return false while not empty? redListPol repeat rpol := first redListPol redListPol := rest redListPol for rpol2 in redListPol repeat not one? gcd(rpol, rpol2) => return false true if R has Field then tablePow(mdeg:NNI,pmod:R,listPol:L BP) == multiE:=multiEuclidean(listPol,1$BP) multiE case "failed" => "failed" ptable:Vector L BP :=new(mdeg+1,[]) ptable.1:=multiE x:BP:=monomial(1,1) for i in 2..mdeg repeat ptable.i:= [tpol*x rem fpol for tpol in ptable.(i-1) for fpol in listPol] ptable.(mdeg+1):=makeProducts listPol ptable solveid(m:BP,pmod:R,table:Vector L BP) : Union(L BP,"failed") == -- Actually, there's no possibility of failure d:=degree m sln:L BP:=[0$BP for xx in table.1] for i in 0 .. d | not zero? coefficient(m,i) repeat sln:=[slp+coefficient(m,i)*pp for pp in table.(i+1) for slp in sln] sln else tablePow(mdeg:NNI,pmod:R,listPol:L BP) == listP:L FP:= [reduce(pol,pmod) for pol in listPol] multiE:=multiEuclidean(listP,1$FP) multiE case "failed" => "failed" ftable:Vector L FP :=new(mdeg+1,[]) fl:L FP:= [ff::FP for ff in multiE] ftable.1:=[fpol for fpol in fl] x:FP:=reduce(monomial(1,1),pmod) for i in 2..mdeg repeat ftable.i:= [tpol*x rem fpol for tpol in ftable.(i-1) for fpol in listP] ptable:= map(coerceLFP,ftable)$VectorFunctions2(List FP,List BP) ptable.(mdeg+1):=makeProducts listPol ptable solveid(m:BP,pmod:R,table:Vector L BP) : Union(L BP,"failed") == d:=degree m ftab:Vector L FP:= map(reduceList(#1,pmod),table)$VectorFunctions2(List BP,List FP) lpolys:L BP:=table.(#table) sln:L FP:=[0$FP for xx in ftab.1] for i in 0 .. d | not zero? coefficient(m,i) repeat sln:=[slp+reduce(coefficient(m,i)::BP,pmod)*pp for pp in ftab.(i+1) for slp in sln] soln:=[slp::BP for slp in sln] (fs:=+/[f*g for f in lpolys for g in soln]) = m=> soln -- Compute bound bound:=compBound(m,lpolys) a:BP:=((fs-m) exquo pmod)::BP liftSol(soln,a,pmod,pmod,table,m,bound) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package GENEEZ GenExEuclid>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}