\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra gdpoly.spad} \author{Barry Trager} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain GDMP GeneralDistributedMultivariatePolynomial} <<domain GDMP GeneralDistributedMultivariatePolynomial>>= )abbrev domain GDMP GeneralDistributedMultivariatePolynomial ++ Author: Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: Ring, degree, eval, coefficient, monomial, differentiate, ++ resultant, gcd, leadingCoefficient ++ Related Constructors: DistributedMultivariatePolynomial, ++ HomogeneousDistributedMultivariatePolynomial ++ Also See: Polynomial ++ AMS Classifications: ++ Keywords: polynomial, multivariate, distributed ++ References: ++ Description: ++ This type supports distributed multivariate polynomials ++ whose variables are from a user specified list of symbols. ++ The coefficient ring may be non commutative, ++ but the variables are assumed to commute. ++ The term ordering is specified by its third parameter. ++ Suggested types which define term orderings include: \spadtype{DirectProduct}, ++ \spadtype{HomogeneousDirectProduct}, \spadtype{SplitHomogeneousDirectProduct} ++ and finally \spadtype{OrderedDirectProduct} which accepts an arbitrary user ++ function to define a term ordering. GeneralDistributedMultivariatePolynomial(vl,R,E): public == private where vl: List Symbol R: Ring E: DirectProductCategory(#vl,NonNegativeInteger) OV ==> OrderedVariableList(vl) SUP ==> SparseUnivariatePolynomial NNI ==> NonNegativeInteger public == PolynomialCategory(R,E,OV) with reorder: (%,List Integer) -> % ++ reorder(p, perm) applies the permutation perm to the variables ++ in a polynomial and returns the new correctly ordered polynomial private == PolynomialRing(R,E) add --representations Term := Record(k:E,c:R) Rep := List Term n := #vl Vec ==> Vector(NonNegativeInteger) zero?(p : %): Boolean == null(p : Rep) totalDegree p == zero? p => 0 "max"/[reduce("+",(t.k)::(Vector NNI), 0) for t in p] monomial(p:%, v: OV,e: NonNegativeInteger):% == locv := lookup v p*monomial(1, directProduct [if z=locv then e else 0 for z in 1..n]$Vec) coerce(v: OV):% == monomial(1,v,1) listCoef(p : %): List R == rec : Term [rec.c for rec in (p:Rep)] mainVariable(p: %) == zero?(p) => "failed" for v in vl repeat vv := variable(v)::OV if positive? degree(p,vv) then return vv "failed" ground?(p) == mainVariable(p) case "failed" retract(p : %): R == not ground? p => error "not a constant" leadingCoefficient p retractIfCan(p : %): Union(R,"failed") == ground?(p) => leadingCoefficient p "failed" degree(p: %,v: OV) == degree(univariate(p,v)) minimumDegree(p: %,v: OV) == minimumDegree(univariate(p,v)) differentiate(p: %,v: OV) == multivariate(differentiate(univariate(p,v)),v) degree(p: %,lv: List OV) == [degree(p,v) for v in lv] minimumDegree(p: %,lv: List OV) == [minimumDegree(p,v) for v in lv] numberOfMonomials(p:%) == l : Rep := p : Rep null(l) => 1 #l monomial?(p : %): Boolean == l : Rep := p : Rep null(l) or null rest(l) if R has OrderedRing then maxNorm(p : %): R == l : List R := nil m: R := 0 for r in listCoef(p) repeat if r > m then m := r else if (-r) > m then m := -r m --trailingCoef(p : %) == -- l : Rep := p : Rep -- null l => 0 -- r : Term := last l -- r.c --leadingPrimitiveMonomial(p : %) == -- ground?(p) => 1$% -- r : Term := first(p:Rep) -- r := [r.k,1$R]$Term -- new cell -- list(r)$Rep :: % -- The following 2 defs are inherited from PolynomialRing --leadingMonomial(p : %) == -- ground?(p) => p -- r : Term := first(p:Rep) -- r := [r.k,r.c]$Term -- new cell -- list(r)$Rep :: % --reductum(p : %): % == -- ground? p => 0$% -- (rest(p:Rep)):% if R has Field then (p : %) / (r : R) == inv(r) * p variables(p: %) == maxdeg:Vector(NonNegativeInteger) := new(n,0) while not zero?(p) repeat tdeg := degree p p := reductum p for i in 1..n repeat maxdeg.i := max(maxdeg.i, tdeg.i) [index(i:PositiveInteger) for i in 1..n | not zero? maxdeg.i] reorder(p: %,perm: List Integer):% == #perm ~= n => error "must be a complete permutation of all vars" q := [[directProduct [term.k.j for j in perm]$Vec,term.c]$Term for term in p] sort(#1.k > #2.k,q) --coerce(dp:DistributedMultivariatePolynomial(vl,R)):% == -- q:=dp:List(Term) -- sort(#1.k > #2.k,q):% univariate(p: %,v: OV):SUP(%) == zero?(p) => 0 exp := degree p locv := lookup v deg:NonNegativeInteger := 0 nexp := directProduct [if i=locv then (deg :=exp.i;0) else exp.i for i in 1..n]$Vec monomial(monomial(leadingCoefficient p,nexp),deg)+ univariate(reductum p,v) eval(p: %,v: OV,val:%):% == univariate(p,v)(val) eval(p: %,v: OV,val:R):% == eval(p,v,val::%)$% eval(p: %,lv: List OV,lval: List R):% == lv = [] => p eval(eval(p,first lv,(first lval)::%)$%, rest lv, rest lval)$% -- assume Lvar are sorted correctly evalSortedVarlist(p: %,Lvar: List OV,Lpval: List %):% == v := mainVariable p v case "failed" => p pv := v:: OV Lvar=[] or Lpval=[] => p mvar := Lvar.first mvar > pv => evalSortedVarlist(p,Lvar.rest,Lpval.rest) pval := Lpval.first pts:SUP(%):= map(evalSortedVarlist(#1,Lvar,Lpval),univariate(p,pv)) mvar=pv => pts(pval) multivariate(pts,pv) eval(p:%,Lvar:List OV,Lpval:List %) == nlvar:List OV := sort(#1 > #2,Lvar) nlpval := Lvar = nlvar => Lpval nlpval := [Lpval.position(mvar,Lvar) for mvar in nlvar] evalSortedVarlist(p,nlvar,nlpval) multivariate(p1:SUP(%),v: OV):% == 0=p1 => 0 degree p1 = 0 => leadingCoefficient p1 leadingCoefficient(p1)*(v::%)**degree(p1) + multivariate(reductum p1,v) univariate(p: %):SUP(R) == (v := mainVariable p) case "failed" => monomial(leadingCoefficient p,0) q := univariate(p,v:: OV) ans:SUP(R) := 0 while q ~= 0 repeat ans := ans + monomial(ground leadingCoefficient q,degree q) q := reductum q ans multivariate(p:SUP(R),v: OV):% == 0=p => 0 (leadingCoefficient p)*monomial(1,v,degree p) + multivariate(reductum p,v) if R has GcdDomain then content(p: %):R == zero?(p) => 0 "gcd"/[t.c for t in p] if R has EuclideanDomain and not(R has FloatingPointSystem) then gcd(p: %,q:%):% == gcd(p,q)$PolynomialGcdPackage(E,OV,R,%) else gcd(p: %,q:%):% == r : R (pv := mainVariable(p)) case "failed" => (r := leadingCoefficient p) = 0$R => q gcd(r,content q)::% (qv := mainVariable(q)) case "failed" => (r := leadingCoefficient q) = 0$R => p gcd(r,content p)::% pv<qv => gcd(p,content univariate(q,qv)) qv<pv => gcd(q,content univariate(p,pv)) multivariate(gcd(univariate(p,pv),univariate(q,qv)),pv) coerce(p: %) : OutputForm == zero?(p) => (0$R) :: OutputForm l,lt : List OutputForm lt := nil vl1 := [v::OutputForm for v in vl] for t in reverse p repeat l := nil for i in 1..#vl1 repeat t.k.i = 0 => "next" t.k.i = 1 => l := cons(vl1.i,l) l := cons(vl1.i ** t.k.i ::OutputForm,l) l := reverse l if not one? t.c or (null l) then l := cons(t.c :: OutputForm,l) 1 = #l => lt := cons(first l,lt) lt := cons(reduce("*",l),lt) 1 = #lt => first lt reduce("+",lt) @ \section{domain DMP DistributedMultivariatePolynomial} <<domain DMP DistributedMultivariatePolynomial>>= )abbrev domain DMP DistributedMultivariatePolynomial ++ Author: Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: Ring, degree, eval, coefficient, monomial, differentiate, ++ resultant, gcd, leadingCoefficient ++ Related Constructors: GeneralDistributedMultivariatePolynomial, ++ HomogeneousDistributedMultivariatePolynomial ++ Also See: Polynomial ++ AMS Classifications: ++ Keywords: polynomial, multivariate, distributed ++ References: ++ Description: ++ This type supports distributed multivariate polynomials ++ whose variables are from a user specified list of symbols. ++ The coefficient ring may be non commutative, ++ but the variables are assumed to commute. ++ The term ordering is lexicographic specified by the variable ++ list parameter with the most significant variable first in the list. DistributedMultivariatePolynomial(vl,R): public == private where vl : List Symbol R : Ring E ==> DirectProduct(#vl,NonNegativeInteger) OV ==> OrderedVariableList(vl) public == PolynomialCategory(R,E,OV) with reorder: (%,List Integer) -> % ++ reorder(p, perm) applies the permutation perm to the variables ++ in a polynomial and returns the new correctly ordered polynomial private == GeneralDistributedMultivariatePolynomial(vl,R,E) @ \section{domain HDMP HomogeneousDistributedMultivariatePolynomial} <<domain HDMP HomogeneousDistributedMultivariatePolynomial>>= )abbrev domain HDMP HomogeneousDistributedMultivariatePolynomial ++ Author: Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: Ring, degree, eval, coefficient, monomial, differentiate, ++ resultant, gcd, leadingCoefficient ++ Related Constructors: DistributedMultivariatePolynomial, ++ GeneralDistributedMultivariatePolynomial ++ Also See: Polynomial ++ AMS Classifications: ++ Keywords: polynomial, multivariate, distributed ++ References: ++ Description: ++ This type supports distributed multivariate polynomials ++ whose variables are from a user specified list of symbols. ++ The coefficient ring may be non commutative, ++ but the variables are assumed to commute. ++ The term ordering is total degree ordering refined by reverse ++ lexicographic ordering with respect to the position that the variables ++ appear in the list of variables parameter. HomogeneousDistributedMultivariatePolynomial(vl,R): public == private where vl : List Symbol R : Ring E ==> HomogeneousDirectProduct(#vl,NonNegativeInteger) OV ==> OrderedVariableList(vl) public == PolynomialCategory(R,E,OV) with reorder: (%,List Integer) -> % ++ reorder(p, perm) applies the permutation perm to the variables ++ in a polynomial and returns the new correctly ordered polynomial private == GeneralDistributedMultivariatePolynomial(vl,R,E) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain GDMP GeneralDistributedMultivariatePolynomial>> <<domain DMP DistributedMultivariatePolynomial>> <<domain HDMP HomogeneousDistributedMultivariatePolynomial>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}