\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra gdirprod.spad} \author{Barry Trager} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package ORDFUNS OrderingFunctions} <<package ORDFUNS OrderingFunctions>>= )abbrev package ORDFUNS OrderingFunctions ++ Author: Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: OrderedDirectProduct ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package provides ordering functions on vectors which ++ are suitable parameters for OrderedDirectProduct. OrderingFunctions(dim,S) : T == C where dim : NonNegativeInteger S : OrderedAbelianMonoid VS == Vector S T == with pureLex : (VS,VS) -> Boolean ++ pureLex(v1,v2) return true if the vector v1 is less than the ++ vector v2 in the lexicographic ordering. totalLex : (VS,VS) -> Boolean ++ totalLex(v1,v2) return true if the vector v1 is less than the ++ vector v2 in the ordering which is total degree refined by ++ lexicographic ordering. reverseLex : (VS,VS) -> Boolean ++ reverseLex(v1,v2) return true if the vector v1 is less than the ++ vector v2 in the ordering which is total degree refined by ++ the reverse lexicographic ordering. C == add n:NonNegativeInteger:=dim -- pure lexicographical ordering pureLex(v1:VS,v2:VS) : Boolean == for i in 1..n repeat if qelt(v1,i) < qelt(v2,i) then return true if qelt(v2,i) < qelt(v1,i) then return false false -- total ordering refined with lex totalLex(v1:VS,v2:VS) :Boolean == n1:S:=0 n2:S:=0 for i in 1..n repeat n1:= n1+qelt(v1,i) n2:=n2+qelt(v2,i) n1<n2 => true n2<n1 => false for i in 1..n repeat if qelt(v1,i) < qelt(v2,i) then return true if qelt(v2,i) < qelt(v1,i) then return false false -- reverse lexicographical ordering reverseLex(v1:VS,v2:VS) :Boolean == n1:S:=0 n2:S:=0 for i in 1..n repeat n1:= n1+qelt(v1,i) n2:=n2+qelt(v2,i) n1<n2 => true n2<n1 => false for i in reverse(1..n) repeat if qelt(v2,i) < qelt(v1,i) then return true if qelt(v1,i) < qelt(v2,i) then return false false @ \section{domain ODP OrderedDirectProduct} <<domain ODP OrderedDirectProduct>>= )abbrev domain ODP OrderedDirectProduct -- all direct product category domains must be compiled -- without subsumption, set SourceLevelSubset to EQUAL --)bo $noSubsumption := true ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: Vector, DirectProduct ++ Also See: HomogeneousDirectProduct, SplitHomogeneousDirectProduct ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This type represents the finite direct or cartesian product of an ++ underlying ordered component type. The ordering on the type is determined ++ by its third argument which represents the less than function on ++ vectors. This type is a suitable third argument for ++ \spadtype{GeneralDistributedMultivariatePolynomial}. OrderedDirectProduct(dim:NonNegativeInteger, S:OrderedAbelianMonoidSup, f:(Vector(S),Vector(S))->Boolean):T == C where T == DirectProductCategory(dim,S) C == DirectProduct(dim,S) add Rep:=Vector(S) x:% < y:% == f(x::Rep,y::Rep) @ \section{domain HDP HomogeneousDirectProduct} <<domain HDP HomogeneousDirectProduct>>= )abbrev domain HDP HomogeneousDirectProduct ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: Vector, DirectProduct ++ Also See: OrderedDirectProduct, SplitHomogeneousDirectproduct ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This type represents the finite direct or cartesian product of an ++ underlying ordered component type. The vectors are ordered first ++ by the sum of their components, and then refined using a reverse ++ lexicographic ordering. This type is a suitable third argument for ++ \spadtype{GeneralDistributedMultivariatePolynomial}. HomogeneousDirectProduct(dim,S) : T == C where dim : NonNegativeInteger S : OrderedAbelianMonoidSup T == DirectProductCategory(dim,S) C == DirectProduct(dim,S) add Rep:=Vector(S) v1:% < v2:% == -- reverse lexicographical ordering n1:S:=0 n2:S:=0 for i in 1..dim repeat n1:= n1+qelt(v1,i) n2:=n2+qelt(v2,i) n1<n2 => true n2<n1 => false for i in reverse(1..dim) repeat if qelt(v2,i) < qelt(v1,i) then return true if qelt(v1,i) < qelt(v2,i) then return false false @ \section{domain SHDP SplitHomogeneousDirectProduct} <<domain SHDP SplitHomogeneousDirectProduct>>= )abbrev domain SHDP SplitHomogeneousDirectProduct ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: Vector, DirectProduct ++ Also See: OrderedDirectProduct, HomogeneousDirectProduct ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This type represents the finite direct or cartesian product of an ++ underlying ordered component type. The vectors are ordered as if ++ they were split into two blocks. The dim1 parameter specifies the ++ length of the first block. The ordering is lexicographic between ++ the blocks but acts like \spadtype{HomogeneousDirectProduct} ++ within each block. This type is a suitable third argument for ++ \spadtype{GeneralDistributedMultivariatePolynomial}. SplitHomogeneousDirectProduct(dimtot,dim1,S) : T == C where NNI ==> NonNegativeInteger dim1,dimtot : NNI S : OrderedAbelianMonoidSup T == DirectProductCategory(dimtot,S) C == DirectProduct(dimtot,S) add Rep:=Vector(S) lessThanRlex(v1:%,v2:%,low:NNI,high:NNI):Boolean == -- reverse lexicographical ordering n1:S:=0 n2:S:=0 for i in low..high repeat n1:= n1+qelt(v1,i) n2:=n2+qelt(v2,i) n1<n2 => true n2<n1 => false for i in reverse(low..high) repeat if qelt(v2,i) < qelt(v1,i) then return true if qelt(v1,i) < qelt(v2,i) then return false false (v1:% < v2:%):Boolean == lessThanRlex(v1,v2,1,dim1) => true for i in 1..dim1 repeat if qelt(v1,i) ~= qelt(v2,i) then return false lessThanRlex(v1,v2,dim1+1,dimtot) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package ORDFUNS OrderingFunctions>> <<domain ODP OrderedDirectProduct>> <<domain HDP HomogeneousDirectProduct>> <<domain SHDP SplitHomogeneousDirectProduct>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}