\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra gbeuclid.spad} \author{Rudiger Gebauer, Michael Moeller} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \begin{verbatim} --------- EUCLIDEAN GROEBNER BASIS PACKAGE --------------- --------- ---------- version 12.01.1986 --------- --------- Example to call euclideanGroebner: --------- --------- a1:DMP[y,x]I:= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1) --------- a2:DMP[y,x]I:= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1) --------- a3:DMP[y,x]I:= (3*x**3 + 2*x**2) + y*(x**3 + x**2) --------- --------- an:=[a1,a2,a3] --------- --------- euclideanGroebner(an,info) --------- ------------------------------------------------------------------------- --------- --------- euclideanGroebner -> calculate weak euclGbasis --------- --------- all reductions are TOTAL reductions --------- --------- use string " redcrit " and you get the reduced critpairs --------- printed --------- --------- use string " info " and you get information about --------- --------- ci => Leading monomial for critpair calculation --------- tci => Number of terms of polynomial i --------- cj => Leading monomial for critpair calculation --------- tcj => Number of terms of polynomial j --------- c => Leading monomial of critpair polynomial --------- tc => Number of terms of critpair polynomial --------- rc => Leading monomial of redcritpair polynomial --------- trc => Number of terms of redcritpair polynomial --------- tH => Number of polynomials in reduction list H --------- tD => Number of critpairs still to do --------- \end{verbatim} \section{package GBEUCLID EuclideanGroebnerBasisPackage} <<package GBEUCLID EuclideanGroebnerBasisPackage>>= )abbrev package GBEUCLID EuclideanGroebnerBasisPackage ++ Authors: Gebauer, Moeller ++ Date Created: 12-1-86 ++ Date Last Updated: 2-28-91 ++ Basic Functions: ++ Related Constructors: Ideal, IdealDecompositionPackage, GroebnerPackage ++ Also See: ++ AMS Classifications: ++ Keywords: groebner basis, polynomial ideal, euclidean domain ++ References: ++ Description: \spadtype{EuclideanGroebnerBasisPackage} computes groebner ++ bases for polynomial ideals over euclidean domains. ++ The basic computation provides ++ a distinguished set of generators for these ideals. ++ This basis allows an easy test for membership: the operation ++ \spadfun{euclideanNormalForm} returns zero on ideal members. The string ++ "info" and "redcrit" can be given as additional args to provide ++ incremental information during the computation. If "info" is given, ++ a computational summary is given for each s-polynomial. If "redcrit" ++ is given, the reduced critical pairs are printed. The term ordering ++ is determined by the polynomial type used. Suggested types include ++ \spadtype{DistributedMultivariatePolynomial}, ++ \spadtype{HomogeneousDistributedMultivariatePolynomial}, ++ \spadtype{GeneralDistributedMultivariatePolynomial}. EuclideanGroebnerBasisPackage(Dom, Expon, VarSet, Dpol): T == C where Dom: EuclideanDomain Expon: OrderedAbelianMonoidSup VarSet: OrderedSet Dpol: PolynomialCategory(Dom, Expon, VarSet) T== with euclideanNormalForm: (Dpol, List(Dpol) ) -> Dpol ++ euclideanNormalForm(poly,gb) reduces the polynomial poly modulo the ++ precomputed groebner basis gb giving a canonical representative ++ of the residue class. euclideanGroebner: List(Dpol) -> List(Dpol) ++ euclideanGroebner(lp) computes a groebner basis for a polynomial ideal ++ over a euclidean domain generated by the list of polynomials lp. euclideanGroebner: (List(Dpol), String) -> List(Dpol) ++ euclideanGroebner(lp, infoflag) computes a groebner basis ++ for a polynomial ideal over a euclidean domain ++ generated by the list of polynomials lp. ++ During computation, additional information is printed out ++ if infoflag is given as ++ either "info" (for summary information) or ++ "redcrit" (for reduced critical pairs) euclideanGroebner: (List(Dpol), String, String ) -> List(Dpol) ++ euclideanGroebner(lp, "info", "redcrit") computes a groebner basis ++ for a polynomial ideal generated by the list of polynomials lp. ++ If the second argument is "info", a summary is given of the critical pairs. ++ If the third argument is "redcrit", critical pairs are printed. C== add Ex ==> OutputForm lc ==> leadingCoefficient red ==> reductum import OutputForm ------ Definition list of critPair ------ lcmfij is now lcm of headterm of poli and polj ------ lcmcij is now lcm of of lc poli and lc polj critPair ==>Record(lcmfij: Expon, lcmcij: Dom, poli:Dpol, polj: Dpol ) Prinp ==> Record( ci:Dpol,tci:Integer,cj:Dpol,tcj:Integer,c:Dpol, tc:Integer,rc:Dpol,trc:Integer,tH:Integer,tD:Integer) ------ Definition of intermediate functions strongGbasis: (List(Dpol), Integer, Integer) -> List(Dpol) eminGbasis: List(Dpol) -> List(Dpol) ecritT: (critPair ) -> Boolean ecritM: (Expon, Dom, Expon, Dom) -> Boolean ecritB: (Expon, Dom, Expon, Dom, Expon, Dom) -> Boolean ecrithinH: (Dpol, List(Dpol)) -> Boolean ecritBonD: (Dpol, List(critPair)) -> List(critPair) ecritMTondd1:(List(critPair)) -> List(critPair) ecritMondd1:(Expon, Dom, List(critPair)) -> List(critPair) crithdelH: (Dpol, List(Dpol)) -> List(Dpol) eupdatF: (Dpol, List(Dpol) ) -> List(Dpol) updatH: (Dpol, List(Dpol), List(Dpol), List(Dpol) ) -> List(Dpol) sortin: (Dpol, List(Dpol) ) -> List(Dpol) eRed: (Dpol, List(Dpol), List(Dpol) ) -> Dpol ecredPol: (Dpol, List(Dpol) ) -> Dpol esPol: (critPair) -> Dpol updatD: (List(critPair), List(critPair)) -> List(critPair) lepol: Dpol -> Integer prinshINFO : Dpol -> Void prindINFO: (critPair, Dpol, Dpol,Integer,Integer,Integer) -> Integer prinpolINFO: List(Dpol) -> Void prinb: Integer -> Void ------ MAIN ALGORITHM GROEBNER ------------------------ euclideanGroebner( Pol: List(Dpol) ) == eminGbasis(strongGbasis(Pol,0,0)) euclideanGroebner( Pol: List(Dpol), xx1: String) == xx1 = "redcrit" => eminGbasis(strongGbasis(Pol,1,0)) xx1 = "info" => eminGbasis(strongGbasis(Pol,2,1)) print(" "::Ex) print("WARNING: options are - redcrit and/or info - "::Ex) print(" you didn't type them correct"::Ex) print(" please try again"::Ex) print(" "::Ex) [] euclideanGroebner( Pol: List(Dpol), xx1: String, xx2: String) == (xx1 = "redcrit" and xx2 = "info") or (xx1 = "info" and xx2 = "redcrit") => eminGbasis(strongGbasis(Pol,1,1)) xx1 = "redcrit" and xx2 = "redcrit" => eminGbasis(strongGbasis(Pol,1,0)) xx1 = "info" and xx2 = "info" => eminGbasis(strongGbasis(Pol,2,1)) print(" "::Ex) print("WARNING: options are - redcrit and/or info - "::Ex) print(" you didn't type them correct"::Ex) print(" please try again "::Ex) print(" "::Ex) [] ------ calculate basis strongGbasis(Pol: List(Dpol),xx1: Integer, xx2: Integer ) == dd1, D : List(critPair) --------- create D and Pol Pol1:= sort( (degree #1 > degree #2) or ((degree #1 = degree #2 ) and sizeLess?(leadingCoefficient #2,leadingCoefficient #1)), Pol) Pol:= [first(Pol1)] H:= Pol Pol1:= rest(Pol1) D:= nil while not null Pol1 repeat h:= first(Pol1) Pol1:= rest(Pol1) en:= degree(h) lch:= lc h dd1:= [[sup(degree(x), en), lcm(leadingCoefficient x, lch), x, h]$critPair for x in Pol] D:= updatD(ecritMTondd1(sort((#1.lcmfij < #2.lcmfij) or (( #1.lcmfij = #2.lcmfij ) and ( sizeLess?(#1.lcmcij,#2.lcmcij)) ), dd1)), ecritBonD(h,D)) Pol:= cons(h, eupdatF(h, Pol)) ((en = degree(first(H))) and (leadingCoefficient(h) = leadingCoefficient(first(H)) ) ) => " go to top of while " H:= updatH(h,H,crithdelH(h,H),[h]) H:= sort((degree #1 > degree #2) or ((degree #1 = degree #2 ) and sizeLess?(leadingCoefficient #2,leadingCoefficient #1)), H) D:= sort((#1.lcmfij < #2.lcmfij) or (( #1.lcmfij = #2.lcmfij ) and ( sizeLess?(#1.lcmcij,#2.lcmcij)) ) ,D) xx:= xx2 -------- loop while not null D repeat D0:= first D ep:=esPol(D0) D:= rest(D) eh:= ecredPol(eRed(ep,H,H),H) if xx1 = 1 then prinshINFO(eh) eh = 0 => if xx2 = 1 then ala:= prindINFO(D0,ep,eh,#H, #D, xx) xx:= 2 " go to top of while " eh := unitCanonical eh e:= degree(eh) leh:= lc eh dd1:= [[sup(degree(x), e), lcm(leadingCoefficient x, leh), x, eh]$critPair for x in Pol] D:= updatD(ecritMTondd1(sort( (#1.lcmfij < #2.lcmfij) or (( #1.lcmfij = #2.lcmfij ) and ( sizeLess?(#1.lcmcij,#2.lcmcij)) ), dd1)), ecritBonD(eh,D)) Pol:= cons(eh,eupdatF(eh,Pol)) not ecrithinH(eh,H) or ((e = degree(first(H))) and (leadingCoefficient(eh) = leadingCoefficient(first(H)) ) ) => if xx2 = 1 then ala:= prindINFO(D0,ep,eh,#H, #D, xx) xx:= 2 " go to top of while " H:= updatH(eh,H,crithdelH(eh,H),[eh]) H:= sort( (degree #1 > degree #2) or ((degree #1 = degree #2 ) and sizeLess?(leadingCoefficient #2,leadingCoefficient #1)), H) if xx2 = 1 then ala:= prindINFO(D0,ep,eh,#H, #D, xx) xx:= 2 " go to top of while " if xx2 = 1 then prinpolINFO(Pol) print(" THE GROEBNER BASIS over EUCLIDEAN DOMAIN"::Ex) if xx1 = 1 and not one? xx2 then print(" THE GROEBNER BASIS over EUCLIDEAN DOMAIN"::Ex) H -------------------------------------- --- erase multiple of e in D2 using crit M ecritMondd1(e: Expon, c: Dom, D2: List(critPair))== null D2 => nil x:= first(D2) ecritM(e,c, x.lcmfij, lcm(leadingCoefficient(x.poli), leadingCoefficient(x.polj))) => ecritMondd1(e, c, rest(D2)) cons(x, ecritMondd1(e, c, rest(D2))) ------------------------------- ecredPol(h: Dpol, F: List(Dpol) ) == h0:Dpol:= 0 null F => h while h ~= 0 repeat h0:= h0 + monomial(leadingCoefficient(h),degree(h)) h:= eRed(red(h), F, F) h0 ---------------------------- --- reduce dd1 using crit T and crit M ecritMTondd1(dd1: List(critPair))== null dd1 => nil f1:= first(dd1) s1:= #(dd1) cT1:= ecritT(f1) s1= 1 and cT1 => nil s1= 1 => dd1 e1:= f1.lcmfij r1:= rest(dd1) f2:= first(r1) e1 = f2.lcmfij and f1.lcmcij = f2.lcmcij => cT1 => ecritMTondd1(cons(f1, rest(r1))) ecritMTondd1(r1) dd1 := ecritMondd1(e1, f1.lcmcij, r1) cT1 => ecritMTondd1(dd1) cons(f1, ecritMTondd1(dd1)) ----------------------------- --- erase elements in D fullfilling crit B ecritBonD(h:Dpol, D: List(critPair))== null D => nil x:= first(D) x1:= x.poli x2:= x.polj ecritB(degree(h), leadingCoefficient(h), degree(x1),leadingCoefficient(x1),degree(x2),leadingCoefficient(x2)) => ecritBonD(h, rest(D)) cons(x, ecritBonD(h, rest(D))) ----------------------------- --- concat F and h and erase multiples of h in F eupdatF(h: Dpol, F: List(Dpol)) == null F => nil f1:= first(F) ecritM(degree h, leadingCoefficient(h), degree f1, leadingCoefficient(f1)) => eupdatF(h, rest(F)) cons(f1, eupdatF(h, rest(F))) ----------------------------- --- concat H and h and erase multiples of h in H updatH(h: Dpol, H: List(Dpol), Hh: List(Dpol), Hhh: List(Dpol)) == null H => append(Hh,Hhh) h1:= first(H) hlcm:= sup(degree(h1), degree(h)) plc:= extendedEuclidean(leadingCoefficient(h), leadingCoefficient(h1)) hp:= monomial(plc.coef1,subtractIfCan(hlcm, degree(h))::Expon)*h + monomial(plc.coef2,subtractIfCan(hlcm, degree(h1))::Expon)*h1 (ecrithinH(hp, Hh) and ecrithinH(hp, Hhh)) => hpp:= append(rest(H),Hh) hp:= ecredPol(eRed(hp,hpp,hpp),hpp) updatH(h, rest(H), crithdelH(hp,Hh),cons(hp,crithdelH(hp,Hhh))) updatH(h, rest(H), Hh,Hhh) -------------------------------------------------- ---- delete elements in cons(h,H) crithdelH(h: Dpol, H: List(Dpol))== null H => nil h1:= first(H) dh1:= degree h1 dh:= degree h ecritM(dh, lc h, dh1, lc h1) => crithdelH(h, rest(H)) dh1 = sup(dh,dh1) => plc:= extendedEuclidean( lc h1, lc h) cons(plc.coef1*h1 + monomial(plc.coef2,subtractIfCan(dh1,dh)::Expon)*h, crithdelH(h,rest(H))) cons(h1, crithdelH(h,rest(H))) eminGbasis(F: List(Dpol)) == null F => nil newbas := eminGbasis rest F cons(ecredPol( first(F), newbas),newbas) ------------------------------------------------ --- does h belong to H ecrithinH(h: Dpol, H: List(Dpol))== null H => true h1:= first(H) ecritM(degree h1, lc h1, degree h, lc h) => false ecrithinH(h, rest(H)) ----------------------------- --- calculate euclidean S-polynomial of a critical pair esPol(p:critPair)== Tij := p.lcmfij fi := p.poli fj := p.polj lij:= lcm(leadingCoefficient(fi), leadingCoefficient(fj)) red(fi)*monomial((lij exquo leadingCoefficient(fi))::Dom, subtractIfCan(Tij, degree fi)::Expon) - red(fj)*monomial((lij exquo leadingCoefficient(fj))::Dom, subtractIfCan(Tij, degree fj)::Expon) ---------------------------- --- euclidean reduction mod F eRed(s: Dpol, H: List(Dpol), Hh: List(Dpol)) == ( s = 0 or null H ) => s f1:= first(H) ds:= degree s lf1:= leadingCoefficient(f1) ls:= leadingCoefficient(s) e: Union(Expon, "failed") (((e:= subtractIfCan(ds, degree f1)) case "failed" ) or sizeLess?(ls, lf1) ) => eRed(s, rest(H), Hh) sdf1:= divide(ls, lf1) q1:= sdf1.quotient sdf1.remainder = 0 => eRed(red(s) - monomial(q1,e)*reductum(f1), Hh, Hh) eRed(s -(monomial(q1, e)*f1), rest(H), Hh) ---------------------------- --- crit T true, if e1 and e2 are disjoint ecritT(p: critPair) == pi:= p.poli pj:= p.polj ci:= lc pi cj:= lc pj (p.lcmfij = degree pi + degree pj) and (p.lcmcij = ci*cj) ---------------------------- --- crit M - true, if lcm#2 multiple of lcm#1 ecritM(e1: Expon, c1: Dom, e2: Expon, c2: Dom) == en: Union(Expon, "failed") ((en:=subtractIfCan(e2, e1)) case "failed") or ((c2 exquo c1) case "failed") => false true ---------------------------- --- crit B - true, if eik is a multiple of eh and eik not equal --- lcm(eh,ei) and eik not equal lcm(eh,ek) ecritB(eh:Expon, ch: Dom, ei:Expon, ci: Dom, ek:Expon, ck: Dom) == eik:= sup(ei, ek) cik:= lcm(ci, ck) ecritM(eh, ch, eik, cik) and not ecritM(eik, cik, sup(ei, eh), lcm(ci, ch)) and not ecritM(eik, cik, sup(ek, eh), lcm(ck, ch)) ------------------------------- --- reduce p1 mod lp euclideanNormalForm(p1: Dpol, lp: List(Dpol))== eRed(p1, lp, lp) --------------------------------- --- insert element in sorted list sortin(p1: Dpol, lp: List(Dpol))== null lp => [p1] f1:= first(lp) elf1:= degree(f1) ep1:= degree(p1) ((elf1 < ep1) or ((elf1 = ep1) and sizeLess?(leadingCoefficient(f1),leadingCoefficient(p1)))) => cons(f1,sortin(p1, rest(lp))) cons(p1,lp) updatD(D1: List(critPair), D2: List(critPair)) == null D1 => D2 null D2 => D1 dl1:= first(D1) dl2:= first(D2) (dl1.lcmfij < dl2.lcmfij) => cons(dl1, updatD(D1.rest, D2)) cons(dl2, updatD(D1, D2.rest)) ---- calculate number of terms of polynomial lepol(p1:Dpol)== n: Integer n:= 0 while p1 ~= 0 repeat n:= n + 1 p1:= red(p1) n ---- print blanc lines prinb(n: Integer)== for i in 1..n repeat messagePrint(" ") ---- print reduced critpair polynom prinshINFO(h: Dpol)== prinb(2) messagePrint(" reduced Critpair - Polynom :") prinb(2) print(h::Ex) prinb(2) ------------------------------- ---- print info string prindINFO(cp: critPair, ps: Dpol, ph: Dpol, i1:Integer, i2:Integer, n:Integer) == ll: List Prinp a: Dom cpi:= cp.poli cpj:= cp.polj if n = 1 then prinb(1) messagePrint("you choose option -info- ") messagePrint("abbrev. for the following information strings are") messagePrint(" ci => Leading monomial for critpair calculation") messagePrint(" tci => Number of terms of polynomial i") messagePrint(" cj => Leading monomial for critpair calculation") messagePrint(" tcj => Number of terms of polynomial j") messagePrint(" c => Leading monomial of critpair polynomial") messagePrint(" tc => Number of terms of critpair polynomial") messagePrint(" rc => Leading monomial of redcritpair polynomial") messagePrint(" trc => Number of terms of redcritpair polynomial") messagePrint(" tF => Number of polynomials in reduction list F") messagePrint(" tD => Number of critpairs still to do") prinb(4) n:= 2 prinb(1) a:= 1 ph = 0 => ps = 0 => ll:= [[monomial(a,degree(cpi)),lepol(cpi),monomial(a,degree(cpj)), lepol(cpj),ps,0,ph,0,i1,i2]$Prinp] print(ll::Ex) prinb(1) n ll:= [[monomial(a,degree(cpi)),lepol(cpi), monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)), lepol(ps), ph,0,i1,i2]$Prinp] print(ll::Ex) prinb(1) n ll:= [[monomial(a,degree(cpi)),lepol(cpi), monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)), lepol(ps),monomial(a,degree(ph)),lepol(ph),i1,i2]$Prinp] print(ll::Ex) prinb(1) n ------------------------------- ---- print the groebner basis polynomials prinpolINFO(pl: List(Dpol))== n:Integer n:= #pl prinb(1) n = 1 => print(" There is 1 Groebner Basis Polynomial "::Ex) prinb(2) print(" There are "::Ex) prinb(1) print(n::Ex) prinb(1) print(" Groebner Basis Polynomials. "::Ex) prinb(2) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package GBEUCLID EuclideanGroebnerBasisPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}