\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra gaussian.spad}
\author{Barry Trager, James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category COMPCAT ComplexCategory}
<<category COMPCAT ComplexCategory>>=
)abbrev category COMPCAT ComplexCategory
++ Author:
++ Date Created:
++ Date Last Updated: 18 March 1994
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: complex, gaussian
++ References:
++ Description:
++ This category represents the extension of a ring by a square
++ root of -1.
ComplexCategory(R:CommutativeRing): Category ==
  Join(MonogenicAlgebra(R, SparseUnivariatePolynomial R), FullyRetractableTo R,
   DifferentialExtension R, FullyEvalableOver R, FullyPatternMatchable(R),
    Patternable(R), FullyLinearlyExplicitRingOver R, CommutativeRing) with
     complex                       ++ indicates that % has sqrt(-1)
     imaginary:   () -> %          ++ imaginary() = sqrt(-1) = %i.
     conjugate:   % -> %           ++ conjugate(x + %i y) returns x - %i y.
     complex  :   (R, R) -> %      ++ complex(x,y) constructs x + %i*y.
     imag     :   % -> R           ++ imag(x) returns imaginary part of x.
     real     :   % -> R           ++ real(x) returns real part of x.
     norm     :   % -> R           ++ norm(x) returns x * conjugate(x)
     if R has OrderedSet then OrderedSet
     if R has IntegralDomain then
       IntegralDomain
       _exquo : (%,R) -> Union(%,"failed")
         ++ exquo(x, r) returns the exact quotient of x by r, or
         ++ "failed" if r does not divide x exactly.
     if R has EuclideanDomain then EuclideanDomain
     if R has multiplicativeValuation then multiplicativeValuation
     if R has additiveValuation then additiveValuation
     if R has Field then        -- this is a lie; we must know that
       Field                    -- x**2+1 is irreducible in R
     if R has ConvertibleTo InputForm then ConvertibleTo InputForm
     if R has CharacteristicZero then CharacteristicZero
     if R has CharacteristicNonZero then CharacteristicNonZero
     if R has RealConstant then
       ConvertibleTo Complex DoubleFloat
       ConvertibleTo Complex Float
     if R has RealNumberSystem then
       abs: % -> %
         ++ abs(x) returns the absolute value of x = sqrt(norm(x)).
     if R has TranscendentalFunctionCategory then
       TranscendentalFunctionCategory
       argument: % -> R  ++ argument(x) returns the angle made by (0,1) and (0,x).
       if R has RadicalCategory then RadicalCategory
       if R has RealNumberSystem then
         polarCoordinates: % -> Record(r:R, phi:R)
           ++ polarCoordinates(x) returns (r, phi) such that x = r * exp(%i * phi).
     if R has IntegerNumberSystem then
       rational?    : % -> Boolean
         ++ rational?(x) tests if x is a rational number.
       rational     : % -> Fraction Integer
         ++ rational(x) returns x as a rational number.
         ++ Error: if x is not a rational number.
       rationalIfCan: % -> Union(Fraction Integer, "failed")
         ++ rationalIfCan(x) returns x as a rational number, or
         ++ "failed" if x is not a rational number.
     if R has PolynomialFactorizationExplicit and R has EuclideanDomain then
        PolynomialFactorizationExplicit
 add
       import MatrixCategoryFunctions2(%, Vector %, Vector %, Matrix %,
                                       R, Vector R, Vector R, Matrix R)
       SUP ==> SparseUnivariatePolynomial
       characteristicPolynomial x ==
          v := monomial(1,1)$SUP(R)
          v**2 - trace(x)*v**1 + norm(x)*v**0
       if R has PolynomialFactorizationExplicit and R has EuclideanDomain then
          SupR ==> SparseUnivariatePolynomial R
          Sup ==> SparseUnivariatePolynomial %
          import FactoredFunctionUtilities Sup
          import UnivariatePolynomialCategoryFunctions2(R,SupR,%,Sup)
          import UnivariatePolynomialCategoryFunctions2(%,Sup,R,SupR)
          pp,qq:Sup
          if R has IntegerNumberSystem then
             myNextPrime: (%,NonNegativeInteger) -> %
             myNextPrime(x,n ) == -- prime is actually in R, and = 3(mod 4)
                xr:=real(x)-4::R
                while not prime? xr repeat
                   xr:=xr-4::R
                complex(xr,0)
             --!TT:=InnerModularGcd(%,Sup,32719 :: %,myNextPrime)
             --!gcdPolynomial(pp,qq) == modularGcd(pp,qq)$TT
             solveLinearPolynomialEquation(lp:List Sup,p:Sup) ==
               solveLinearPolynomialEquation(lp,p)$ComplexIntegerSolveLinearPolynomialEquation(R,%)
          normPolynomial: Sup -> SupR
          normPolynomial pp ==
              map(retract(#1@%)::R,pp * map(conjugate,pp))
          factorPolynomial pp ==
              refine(squareFree pp,factorSquareFreePolynomial)
          factorSquareFreePolynomial pp ==
              pnorm:=normPolynomial pp
              k:R:=0
              while degree gcd(pnorm,differentiate pnorm)>0 repeat
                 k:=k+1
                 pnorm:=normPolynomial
                          elt(pp,monomial(1,1)-monomial(complex(0,k),0))
              fR:=factorSquareFreePolynomial pnorm
              numberOfFactors fR = 1 =>
                  makeFR(1,[["irred",pp,1]])
              lF:List Record(flg:Union("nil", "sqfr", "irred", "prime"),
                             fctr:Sup, xpnt:Integer):=[]
              for u in factorList fR repeat
                  p1:=map((#1@R)::%,u.fctr)
                  if not zero? k then
                     p1:=elt(p1,monomial(1,1)+monomial(complex(0,k),0))
                  p2:=gcd(p1,pp)
                  lF:=cons(["irred",p2,1],lF)
                  pp:=(pp exquo p2)::Sup
              makeFR(pp,lF)
       rank()           == 2
       discriminant()   == -4 :: R
       norm x           == real(x)**2 + imag(x)**2
       trace x          == 2 * real x
       imaginary()      == complex(0, 1)
       conjugate x      == complex(real x, - imag x)
       characteristic() == characteristic()$R
       map(fn, x)       == complex(fn real x, fn imag x)
       x = y            == real(x) = real(y) and imag(x) = imag(y)
       x + y            == complex(real x + real y, imag x + imag y)
       - x              == complex(- real x, - imag x)
       r:R * x:%        == complex(r * real x, r * imag x)
       coordinates(x:%) == [real x, imag x]
       n:Integer * x:%  == complex(n * real x, n * imag x)
       differentiate(x:%, d:R -> R) == complex(d real x, d imag x)

       definingPolynomial() ==
         monomial(1,2)$(SUP R) + monomial(1,0)$(SUP R)

       reduce(pol:SUP R) ==
         part:= (monicDivide(pol,definingPolynomial())).remainder
         complex(coefficient(part,0),coefficient(part,1))

       lift(x) == monomial(real x,0)$(SUP R)+monomial(imag x,1)$(SUP R)

       minimalPolynomial x ==
         zero? imag x =>
           monomial(1, 1)$(SUP R) - monomial(real x, 0)$(SUP R)
         monomial(1, 2)$(SUP R) - monomial(trace x, 1)$(SUP R)
           + monomial(norm x, 0)$(SUP R)

       coordinates(x:%, v:Vector %):Vector(R) ==
         ra := real(a := v(minIndex v))
         rb := real(b := v(maxIndex v))
         (#v ^= 2) or
           ((d := recip(ra * (ib := imag b) - (ia := imag a) * rb))
             case "failed") =>error "coordinates: vector is not a basis"
         rx := real x
         ix := imag x
         [d::R * (rx * ib - ix * rb), d::R * (ra * ix - ia * rx)]

       coerce(x:%):OutputForm ==
         re := (r := real x)::OutputForm
         ie := (i := imag x)::OutputForm
         zero? i => re
         outi := "%i"::Symbol::OutputForm
         ip :=
--           one? i => outi
           (i = 1) => outi
--           one?(-i) => -outi
           ((-i) = 1) => -outi
           ie * outi
         zero? r => ip
         re + ip

       retract(x:%):R ==
         not zero?(imag x) =>
           error "Imaginary part is nonzero. Cannot retract."
         real x

       retractIfCan(x:%):Union(R, "failed") ==
         not zero?(imag x) => "failed"
         real x

       x:% * y:% ==
         complex(real x * real y - imag x * imag y,
                  imag x * real y + imag y * real x)

       reducedSystem(m:Matrix %):Matrix R ==
         vertConcat(map(real, m), map(imag, m))

       reducedSystem(m:Matrix %, v:Vector %):
        Record(mat:Matrix R, vec:Vector R) ==
         rh := reducedSystem(v::Matrix %)@Matrix(R)
         [reducedSystem(m)@Matrix(R), column(rh, minColIndex rh)]

       if R has RealNumberSystem then
         abs(x:%):%        == (sqrt norm x)::%

       if R has RealConstant then
         convert(x:%):Complex(DoubleFloat) ==
          complex(convert(real x)@DoubleFloat,convert(imag x)@DoubleFloat)

         convert(x:%):Complex(Float) ==
           complex(convert(real x)@Float, convert(imag x)@Float)

       if R has ConvertibleTo InputForm then
         convert(x:%):InputForm ==
           convert([convert("complex"::Symbol), convert real x,
                    convert imag x]$List(InputForm))@InputForm

       if R has ConvertibleTo Pattern Integer then
         convert(x:%):Pattern Integer ==
            convert(x)$ComplexPattern(Integer, R, %)
       if R has ConvertibleTo Pattern Float then
         convert(x:%):Pattern Float ==
            convert(x)$ComplexPattern(Float, R, %)

       if R has PatternMatchable Integer then
         patternMatch(x:%, p:Pattern Integer,
          l:PatternMatchResult(Integer, %)) ==
           patternMatch(x, p, l)$ComplexPatternMatch(Integer, R, %)

       if R has PatternMatchable Float then
         patternMatch(x:%, p:Pattern Float,
          l:PatternMatchResult(Float, %)) ==
           patternMatch(x, p, l)$ComplexPatternMatch(Float, R, %)


       if R has OrderedSet then
         x < y ==
           real x = real y => imag x < imag y
           real x < real y

       if R has IntegerNumberSystem then
         rational? x == zero? imag x

         rational x ==
           zero? imag x => rational real x
           error "Not a rational number"

         rationalIfCan x ==
           zero? imag x => rational real x
           "failed"

       if R has Field then
         inv x ==
           zero? imag x => (inv real x)::%
           r := norm x
           complex(real(x) / r, - imag(x) / r)

       if R has IntegralDomain then
         _exquo(x:%, r:R) ==
--           one? r => x
           (r = 1) => x
           (r1 := real(x) exquo r) case "failed" => "failed"
           (r2 := imag(x) exquo r) case "failed" => "failed"
           complex(r1, r2)

         _exquo(x:%, y:%) ==
           zero? imag y => x exquo real y
           x * conjugate(y) exquo norm(y)

         recip(x:%) == 1 exquo x

         if R has OrderedRing then
           unitNormal x ==
             zero? x => [1,x,1]
             (u := recip x) case % => [x, 1, u]
             zero? real x =>
               c := unitNormal imag x
               [complex(0, c.unit), (c.associate * imag x)::%,
                                              complex(0, - c.associate)]
             c := unitNormal real x
             x := c.associate * x
             imag x < 0 =>
               x := complex(- imag x, real x)
               [- c.unit * imaginary(), x, c.associate * imaginary()]
             [c.unit ::%, x, c.associate ::%]
         else
           unitNormal x ==
             zero? x => [1,x,1]
             (u := recip x) case % => [x, 1, u]
             zero? real x =>
               c := unitNormal imag x
               [complex(0, c.unit), (c.associate * imag x)::%,
                                              complex(0, - c.associate)]
             c := unitNormal real x
             x := c.associate * x
             [c.unit ::%, x, c.associate ::%]

       if R has EuclideanDomain then
          if R has additiveValuation then
              euclideanSize x == max(euclideanSize real x,
                                     euclideanSize imag x)
          else
              euclideanSize x == euclideanSize(real(x)**2 + imag(x)**2)$R
          if R has IntegerNumberSystem then
            x rem y ==
              zero? imag y =>
                yr:=real y
                complex(symmetricRemainder(real(x), yr),
                        symmetricRemainder(imag(x), yr))
              divide(x, y).remainder
            x quo y ==
              zero? imag y =>
                yr:= real y
                xr:= real x
                xi:= imag x
                complex((xr-symmetricRemainder(xr,yr)) quo yr,
                        (xi-symmetricRemainder(xi,yr)) quo yr)
              divide(x, y).quotient

          else
            x rem y ==
              zero? imag y =>
                yr:=real y
                complex(real(x) rem yr,imag(x) rem yr)
              divide(x, y).remainder
            x quo y ==
              zero? imag y => complex(real x quo real y,imag x quo real y)
              divide(x, y).quotient

          divide(x, y) ==
            r := norm y
            y1 := conjugate y
            xx := x * y1
            x1 := real(xx) rem r
            a  := x1
            if x1^=0 and sizeLess?(r, 2 * x1) then
              a := x1 - r
              if sizeLess?(x1, a) then a := x1 + r
            x2 := imag(xx) rem r
            b  := x2
            if x2^=0 and sizeLess?(r, 2 * x2) then
              b := x2 - r
              if sizeLess?(x2, b) then b := x2 + r
            y1 := (complex(a, b) exquo y1)::%
            [((x - y1) exquo y)::%, y1]

       if R has TranscendentalFunctionCategory then
         half := recip(2::R)::R

         if R has RealNumberSystem then
           atan2loc(y: R, x: R): R ==
               pi1 := pi()$R
               pi2 := pi1 * half
               x = 0 => if y >= 0 then pi2 else -pi2

               -- Atan in (-pi/2,pi/2]
               theta := atan(y * recip(x)::R)
               while theta <= -pi2 repeat theta := theta + pi1
               while theta >   pi2 repeat theta := theta - pi1

               x >= 0 => theta      -- I or IV

               if y >= 0 then
                   theta + pi1      -- II
               else
                   theta - pi1      -- III

           argument x == atan2loc(imag x, real x)

         else
           -- Not ordered so dictate two quadrants
           argument x ==
             zero? real x => pi()$R * half
             atan(imag(x) * recip(real x)::R)

         pi()  == pi()$R :: %

         if R is DoubleFloat then
            stoc ==> S_-TO_-C$Lisp
            ctos ==> C_-TO_-S$Lisp

            exp   x == ctos EXP(stoc x)$Lisp
            log   x == ctos LOG(stoc x)$Lisp

            sin   x == ctos SIN(stoc x)$Lisp
            cos   x == ctos COS(stoc x)$Lisp
            tan   x == ctos TAN(stoc x)$Lisp
            asin  x == ctos ASIN(stoc x)$Lisp
            acos  x == ctos ACOS(stoc x)$Lisp
            atan  x == ctos ATAN(stoc x)$Lisp

            sinh  x == ctos SINH(stoc x)$Lisp
            cosh  x == ctos COSH(stoc x)$Lisp
            tanh  x == ctos TANH(stoc x)$Lisp
            asinh x == ctos ASINH(stoc x)$Lisp
            acosh x == ctos ACOSH(stoc x)$Lisp
            atanh x == ctos ATANH(stoc x)$Lisp

         else
           atan x ==
             ix := imaginary()*x
             - imaginary() * half * (log(1 + ix) - log(1 - ix))

           log x ==
             complex(log(norm x) * half, argument x)

           exp x ==
             e := exp real x
             complex(e * cos imag x, e * sin imag x)

           cos x ==
             e := exp(imaginary() * x)
             half * (e + recip(e)::%)

           sin x ==
             e := exp(imaginary() * x)
             - imaginary() * half * (e - recip(e)::%)

         if R has RealNumberSystem then
           polarCoordinates x ==
             [sqrt norm x, (negative?(t := argument x) => t + 2 * pi(); t)]

           x:% ** q:Fraction(Integer) ==
             zero? q =>
               zero? x => error "0 ** 0 is undefined"
               1
             zero? x => 0
             rx := real x
             zero? imag x and positive? rx => (rx ** q)::%
             zero? imag x and denom q = 2 => complex(0, (-rx)**q)
             ax := sqrt(norm x) ** q
             tx := q::R * argument x
             complex(ax * cos tx, ax * sin tx)

         else if R has RadicalCategory then
           x:% ** q:Fraction(Integer) ==
             zero? q =>
               zero? x => error "0 ** 0 is undefined"
               1
             r := real x
             zero?(i := imag x) => (r ** q)::%
             t := numer(q) * recip(denom(q)::R)::R * argument x
             e:R :=
               zero? r => i ** q
               norm(x) ** (q / (2::Fraction(Integer)))
             complex(e * cos t, e * sin t)

@
\section{package COMPLPAT ComplexPattern}
<<package COMPLPAT ComplexPattern>>=
)abbrev package COMPLPAT ComplexPattern
++ Author: Barry Trager
++ Date Created: 30 Nov 1995
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: complex, patterns
++ References:
++ Description:
++ This package supports converting complex expressions to patterns
ComplexPattern(R, S, CS) : C == T where
    R: SetCategory
    S: Join(ConvertibleTo Pattern R, CommutativeRing)
    CS: ComplexCategory S
    C == with
       convert: CS -> Pattern R
	  ++ convert(cs) converts the complex expression cs to a pattern

    T == add

       ipat : Pattern R := patternVariable("%i"::Symbol, true, false, false)

       convert(cs) ==
          zero? imag cs => convert real cs
          convert real cs + ipat * convert imag cs

@
\section{package CPMATCH ComplexPatternMatch}
<<package CPMATCH ComplexPatternMatch>>=
)abbrev package CPMATCH ComplexPatternMatch
++ Author: Barry Trager
++ Date Created: 30 Nov 1995
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: complex, pattern matching
++ References:
++ Description:
++ This package supports matching patterns involving complex expressions
ComplexPatternMatch(R, S, CS) : C == T where
    R: SetCategory
    S: Join(PatternMatchable R, CommutativeRing)
    CS: ComplexCategory S
    PMRS ==> PatternMatchResult(R, CS)
    PS   ==> Polynomial S
    C == with
       if PS has PatternMatchable(R) then
           patternMatch: (CS, Pattern R, PMRS) -> PMRS
             ++ patternMatch(cexpr, pat, res) matches the pattern pat to the
             ++ complex expression cexpr. res contains the variables of pat
             ++ which are already matched and their matches.

    T == add

       import PatternMatchPushDown(R, S, CS)
       import PatternMatchResultFunctions2(R, PS, CS)
       import PatternMatchResultFunctions2(R, CS, PS)

       ivar : PS := "%i"::Symbol::PS

       makeComplex(p:PS):CS ==
          up := univariate p
	  degree up > 1 => error "not linear in %i"
	  icoef:=leadingCoefficient(up)
          rcoef:=leadingCoefficient(reductum p)
	  complex(rcoef,icoef)

       makePoly(cs:CS):PS == real(cs)*ivar + imag(cs)::PS

       if PS has PatternMatchable(R) then
          patternMatch(cs, pat, result) ==
	     zero? imag cs =>
                patternMatch(real cs, pat, result)
             map(makeComplex,
                patternMatch(makePoly cs, pat, map(makePoly, result)))

@
\section{domain COMPLEX Complex}
<<domain COMPLEX Complex>>=
)abbrev domain COMPLEX Complex
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ \spadtype {Complex(R)} creates the domain of elements of the form
++ \spad{a + b * i} where \spad{a} and b come from the ring R,
++ and i is a new element such that \spad{i**2 = -1}.
Complex(R:CommutativeRing): ComplexCategory(R) with
     if R has OpenMath then OpenMath
   == add
       Rep := Record(real:R, imag:R)

       if R has OpenMath then 
         writeOMComplex(dev: OpenMathDevice, x: %): Void ==
          OMputApp(dev)
          OMputSymbol(dev, "complex1", "complex__cartesian")
          OMwrite(dev, real x)
          OMwrite(dev, imag x)
          OMputEndApp(dev)

         OMwrite(x: %): String ==
          s: String := ""
          sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
          dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
          OMputObject(dev)
          writeOMComplex(dev, x)
          OMputEndObject(dev)
          OMclose(dev)
          s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
          s

         OMwrite(x: %, wholeObj: Boolean): String ==
          s: String := ""
          sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
          dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
          if wholeObj then
            OMputObject(dev)
          writeOMComplex(dev, x)
          if wholeObj then
            OMputEndObject(dev)
          OMclose(dev)
          s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
          s

         OMwrite(dev: OpenMathDevice, x: %): Void ==
          OMputObject(dev)
          writeOMComplex(dev, x)
          OMputEndObject(dev)

         OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
          if wholeObj then
            OMputObject(dev)
          writeOMComplex(dev, x)
          if wholeObj then
            OMputEndObject(dev)

       0                == [0, 0]
       1                == [1, 0]
       zero? x          == zero?(x.real) and zero?(x.imag)
--       one? x           == one?(x.real) and zero?(x.imag)
       one? x           == ((x.real) = 1) and zero?(x.imag)
       coerce(r:R):%    == [r, 0]
       complex(r, i)   == [r, i]
       real x           == x.real
       imag x           == x.imag
       x + y            == [x.real + y.real, x.imag + y.imag]
                           -- by re-defining this here, we save 5 fn calls
       x:% * y:% ==
         [x.real * y.real - x.imag * y.imag,
          x.imag * y.real + y.imag * x.real] -- here we save nine!


       if R has IntegralDomain then
         _exquo(x:%, y:%) == -- to correct bad defaulting problem
           zero? y.imag => x exquo y.real
           x * conjugate(y) exquo norm(y)

@
\section{package COMPLEX2 ComplexFunctions2}
<<package COMPLEX2 ComplexFunctions2>>=
)abbrev package COMPLEX2 ComplexFunctions2
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   This package extends maps from underlying rings to maps between
++   complex over those rings.
ComplexFunctions2(R:CommutativeRing, S:CommutativeRing): with
    map:     (R -> S, Complex R) -> Complex S
      ++ map(f,u) maps f onto real and imaginary parts of u.
 == add
    map(fn, gr) == complex(fn real gr, fn imag gr)

@
\section{package COMPFACT ComplexFactorization}
<<package COMPFACT ComplexFactorization>>=
)abbrev package COMPFACT ComplexFactorization
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: Complex, UnivariatePolynomial
++ Also See:
++ AMS Classifications:
++ Keywords: complex, polynomial factorization, factor
++ References:
ComplexFactorization(RR,PR) : C == T where
  RR   :    EuclideanDomain   -- R is Z or Q
  PR   :    UnivariatePolynomialCategory Complex RR
  R    ==>  Complex RR
  I    ==>  Integer
  RN   ==>  Fraction I
  GI   ==>  Complex I
  GRN  ==>  Complex RN


  C  == with

     factor        :   PR   ->  Factored PR
       ++ factor(p) factorizes the polynomial p with complex coefficients.

  T  == add
     SUP    ==> SparseUnivariatePolynomial
     fUnion ==> Union("nil", "sqfr", "irred", "prime")
     FF     ==> Record(flg:fUnion, fctr:PR, xpnt:Integer)
     SAEF   :=  SimpleAlgebraicExtensionAlgFactor(SUP RN,GRN,SUP GRN)
     UPCF2  :=  UnivariatePolynomialCategoryFunctions2(R,PR,GRN,SUP GRN)
     UPCFB  :=  UnivariatePolynomialCategoryFunctions2(GRN,SUP GRN,R,PR)

     myMap(r:R) : GRN ==
       R is GI   =>
         cr :GI := r pretend GI
         complex((real cr)::RN,(imag cr)::RN)
       R is GRN  => r pretend GRN

     compND(cc:GRN):Record(cnum:GI,cden:Integer) ==
       ccr:=real cc
       cci:=imag cc
       dccr:=denom ccr
       dcci:=denom cci
       ccd:=lcm(dccr,dcci)
       [complex(((ccd exquo dccr)::Integer)*numer ccr,
                ((ccd exquo dcci)::Integer)*numer cci),ccd]

     conv(f:SUP GRN) :Record(convP:SUP GI, convD:RN) ==
       pris:SUP GI :=0
       dris:Integer:=1
       dris1:Integer:=1
       pdris:Integer:=1
       for i in 0..(degree f) repeat
         (cf:= coefficient(f,i)) = 0 => "next i"
         cdf:=compND cf
         dris:=lcm(cdf.cden,dris1)
         pris:=((dris exquo dris1)::Integer)*pris +
               ((dris exquo cdf.cden)::Integer)*
                 monomial(cdf.cnum,i)$(SUP GI)
         dris1:=dris
       [pris,dris::RN]

     backConv(ffr:Factored SUP GRN) : Factored PR ==
       R is GRN =>
         makeFR((unit ffr) pretend PR,[[f.flg,(f.fctr) pretend PR,f.xpnt]
                                        for f in factorList ffr])
       R is GI  =>
         const:=unit ffr
         ris: List FF :=[]
         for ff in factorList ffr repeat
           fact:=primitivePart(conv(ff.fctr).convP)
           expf:=ff.xpnt
           ris:=cons([ff.flg,fact pretend PR,expf],ris)
           lc:GRN := myMap leadingCoefficient(fact pretend PR)
           const:= const*(leadingCoefficient(ff.fctr)/lc)**expf
         uconst:GI:= compND(coefficient(const,0)).cnum
         makeFR((uconst pretend R)::PR,ris)


     factor(pol : PR)  : Factored PR ==
       ratPol:SUP GRN := 0
       ratPol:=map(myMap,pol)$UPCF2
       ffr:=factor ratPol
       backConv ffr

@
\section{package CINTSLPE ComplexIntegerSolveLinearPolynomialEquation}
<<package CINTSLPE ComplexIntegerSolveLinearPolynomialEquation>>=
)abbrev package CINTSLPE ComplexIntegerSolveLinearPolynomialEquation
++ Author: James Davenport
++ Date Created: 1990
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides the generalized euclidean algorithm which is
++ needed as the basic step for factoring polynomials.
ComplexIntegerSolveLinearPolynomialEquation(R,CR): C == T
 where
  CP ==> SparseUnivariatePolynomial CR
  R:IntegerNumberSystem
  CR:ComplexCategory(R)
  C == with
      solveLinearPolynomialEquation: (List CP,CP) -> Union(List CP,"failed")
                   ++ solveLinearPolynomialEquation([f1, ..., fn], g)
                   ++ where (fi relatively prime to each other)
                   ++ returns a list of ai such that
                   ++ g = sum ai prod fj (j \= i) or
                   ++ equivalently g/prod fj = sum (ai/fi)
                   ++ or returns "failed" if no such list exists
  T == add
      oldlp:List CP := []
      slpePrime:R:=(2::R)
      oldtable:Vector List CP := empty()
      solveLinearPolynomialEquation(lp,p) ==
         if (oldlp ^= lp) then
            -- we have to generate a new table
            deg:= _+/[degree u for u in lp]
            ans:Union(Vector List CP,"failed"):="failed"
            slpePrime:=67108859::R   -- 2**26 -5 : a prime
                 -- a good test case for this package is
                 --  (good question?)
            while (ans case "failed") repeat
              ans:=tablePow(deg,complex(slpePrime,0),lp)$GenExEuclid(CR,CP)
              if (ans case "failed") then
                 slpePrime:=  slpePrime-4::R
                 while not prime?(slpePrime)$IntegerPrimesPackage(R) repeat
                   slpePrime:= slpePrime-4::R
            oldtable:=(ans:: Vector List CP)
         answer:=solveid(p,complex(slpePrime,0),oldtable)
         answer

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category COMPCAT ComplexCategory>>
<<package COMPLPAT ComplexPattern>>
<<package CPMATCH ComplexPatternMatch>>
<<domain COMPLEX Complex>>
<<package COMPLEX2 ComplexFunctions2>>
<<package COMPFACT ComplexFactorization>>
<<package CINTSLPE ComplexIntegerSolveLinearPolynomialEquation>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}