\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra gaussfac.spad} \author{Patrizia Gianni} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package GAUSSFAC GaussianFactorizationPackage} <<package GAUSSFAC GaussianFactorizationPackage>>= )abbrev package GAUSSFAC GaussianFactorizationPackage ++ Author: Patrizia Gianni ++ Date Created: Summer 1986 ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: Package for the factorization of complex or gaussian ++ integers. GaussianFactorizationPackage() : C == T where NNI == NonNegativeInteger Z ==> Integer ZI ==> Complex Z FRZ ==> Factored ZI fUnion ==> Union("nil", "sqfr", "irred", "prime") FFE ==> Record(flg:fUnion, fctr:ZI, xpnt:Integer) C == with factor : ZI -> FRZ ++ factor(zi) produces the complete factorization of the complex ++ integer zi. sumSquares : Z -> List Z ++ sumSquares(p) construct \spad{a} and b such that \spad{a**2+b**2} ++ is equal to ++ the integer prime p, and otherwise returns an error. ++ It will succeed if the prime number p is 2 or congruent to 1 ++ mod 4. prime? : ZI -> Boolean ++ prime?(zi) tests if the complex integer zi is prime. T == add import IntegerFactorizationPackage Z reduction(u:Z,p:Z):Z == p=0 => u positiveRemainder(u,p) merge(p:Z,q:Z):Union(Z,"failed") == p = q => p p = 0 => q q = 0 => p "failed" exactquo(u:Z,v:Z,p:Z):Union(Z,"failed") == p=0 => u exquo v v rem p = 0 => "failed" positiveRemainder((extendedEuclidean(v,p,u)::Record(coef1:Z,coef2:Z)).coef1,p) FMod := ModularRing(Z,Z,reduction,merge,exactquo) fact2:ZI:= complex(1,1) ---- find the solution of x**2+1 mod q ---- findelt(q:Z) : Z == q1:=q-1 r:=q1 r1:=r exquo 4 while not (r1 case "failed") repeat r:=r1::Z r1:=r exquo 2 s : FMod := reduce(1,q) qq1:FMod :=reduce(q1,q) for i in 2.. while (s=1 or s=qq1) repeat s:=reduce(i,q)**(r::NNI) t:=s while t~=qq1 repeat s:=t t:=t**2 s::Z ---- write p, congruent to 1 mod 4, as a sum of two squares ---- sumsq1(p:Z) : List Z == s:= findelt(p) u:=p while u**2>p repeat w:=u rem s u:=s s:=w [u,s] ---- factorization of an integer ---- intfactor(n:Z) : Factored ZI == lfn:= factor n r : List FFE :=[] unity:ZI:=complex(unit lfn,0) for term in (factorList lfn) repeat n:=term.fctr exp:=term.xpnt n=2 => r :=concat(["prime",fact2,2*exp]$FFE,r) unity:=unity*complex(0,-1)**(exp rem 4)::NNI (n rem 4) = 3 => r:=concat(["prime",complex(n,0),exp]$FFE,r) sz:=sumsq1(n) z:=complex(sz.1,sz.2) r:=concat(["prime",z,exp]$FFE, concat(["prime",conjugate(z),exp]$FFE,r)) makeFR(unity,r) ---- factorization of a gaussian number ---- factor(m:ZI) : FRZ == m=0 => primeFactor(0,1) a:= real m (b:= imag m)=0 => intfactor(a) :: FRZ a=0 => ris:=intfactor(b) unity:= unit(ris)*complex(0,1) makeFR(unity,factorList ris) d:=gcd(a,b) result : List FFE :=[] unity:ZI:=1$ZI if d~=1 then a:=(a exquo d)::Z b:=(b exquo d)::Z r:= intfactor(d) result:=factorList r unity:=unit r m:=complex(a,b) n:Z:=a**2+b**2 factn:= factorList(factor n) part:FFE:=["prime",0$ZI,0] for term in factn repeat n:=term.fctr exp:=term.xpnt n=2 => part:= ["prime",fact2,exp]$FFE m:=m quo (fact2**exp:NNI) result:=concat(part,result) (n rem 4) = 3 => g0:=complex(n,0) part:= ["prime",g0,exp quo 2]$FFE m:=m quo g0 result:=concat(part,result) z:=gcd(m,complex(n,0)) part:= ["prime",z,exp]$FFE z:=z**(exp:NNI) m:=m quo z result:=concat(part,result) if m~=1 then unity:=unity * m makeFR(unity,result) ---- write p prime like sum of two squares ---- sumSquares(p:Z) : List Z == p=2 => [1,1] p rem 4 ~= 1 => error "no solutions" sumsq1(p) prime?(a:ZI) : Boolean == n : Z := norm a n=0 => false -- zero n=1 => false -- units prime?(n)$IntegerPrimesPackage(Z) => true re : Z := real a im : Z := imag a re~=0 and im~=0 => false p : Z := abs(re+im) -- a is of the form p, -p, %i*p or -%i*p p rem 4 ~= 3 => false -- return-value true, if p is a rational prime, -- and false, otherwise prime?(p)$IntegerPrimesPackage(Z) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package GAUSSFAC GaussianFactorizationPackage>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}