\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra galfactu.spad} \author{Frederic Lehobey} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package GALFACTU GaloisGroupFactorizationUtilities} <<package GALFACTU GaloisGroupFactorizationUtilities>>= )abbrev package GALFACTU GaloisGroupFactorizationUtilities ++ Author: Frederic Lehobey ++ Date Created: 30 June 1994 ++ Date Last Updated: 19 October 1995 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ [1] Bernard Beauzamy, Products of polynomials and a priori estimates for ++ coefficients in polynomial decompositions: a sharp result, ++ J. Symbolic Computation (1992) 13, 463-472 ++ [2] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in ++ Terms of Bombieri's Norms: I. The Largest Factor, ++ J. Symbolic Computation (1993) 16, 115-130 ++ [3] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in ++ Terms of Bombieri's Norms: II. The Smallest Factor, ++ J. Symbolic Computation (1993) 16, 131-145 ++ [4] Maurice Mignotte, Some Useful Bounds, ++ Computing, Suppl. 4, 259-263 (1982), Springer-Verlag ++ [5] Donald E. Knuth, The Art of Computer Programming, Vol. 2, (Seminumerical ++ Algorithms) 1st edition, 2nd printing, Addison-Wesley 1971, p. 397-398 ++ [6] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial ++ Factorization: Sharp Bounds, Efficient Algorithms, ++ J. Symbolic Computation (1993) 15, 393-413 ++ [7] Augustin-Lux Cauchy, Exercices de Math\'ematiques Quatri\`eme Ann\'ee. ++ De Bure Fr\`eres, Paris 1829 (reprinted Oeuvres, II S\'erie, Tome IX, ++ Gauthier-Villars, Paris, 1891). ++ Description: ++ \spadtype{GaloisGroupFactorizationUtilities} provides functions ++ that will be used by the factorizer. GaloisGroupFactorizationUtilities(R,UP,F): Exports == Implementation where R : Ring UP : UnivariatePolynomialCategory R F : Join(FloatingPointSystem,RetractableTo(R),Field, TranscendentalFunctionCategory,ElementaryFunctionCategory) N ==> NonNegativeInteger P ==> PositiveInteger Z ==> Integer Exports ==> with beauzamyBound: UP -> Z -- See [1] ++ beauzamyBound(p) returns a bound on the larger coefficient of any ++ factor of p. bombieriNorm: UP -> F -- See [1] ++ bombieriNorm(p) returns quadratic Bombieri's norm of p. bombieriNorm: (UP,P) -> F -- See [2] and [3] ++ bombieriNorm(p,n) returns the nth Bombieri's norm of p. rootBound: UP -> Z -- See [4] and [5] ++ rootBound(p) returns a bound on the largest norm of the complex roots ++ of p. singleFactorBound: (UP,N) -> Z -- See [6] ++ singleFactorBound(p,r) returns a bound on the infinite norm of ++ the factor of p with smallest Bombieri's norm. r is a lower bound ++ for the number of factors of p. p shall be of degree higher or equal ++ to 2. singleFactorBound: UP -> Z -- See [6] ++ singleFactorBound(p,r) returns a bound on the infinite norm of ++ the factor of p with smallest Bombieri's norm. p shall be of degree ++ higher or equal to 2. norm: (UP,P) -> F ++ norm(f,p) returns the lp norm of the polynomial f. quadraticNorm: UP -> F ++ quadraticNorm(f) returns the l2 norm of the polynomial f. infinityNorm: UP -> F ++ infinityNorm(f) returns the maximal absolute value of the coefficients ++ of the polynomial f. height: UP -> F ++ height(p) returns the maximal absolute value of the coefficients of ++ the polynomial p. length: UP -> F ++ length(p) returns the sum of the absolute values of the coefficients ++ of the polynomial p. Implementation ==> add import GaloisGroupUtilities(F) height(p:UP):F == infinityNorm(p) length(p:UP):F == norm(p,1) norm(f:UP,p:P):F == n : F := 0 for c in coefficients f repeat n := n+abs(c::F)**p nthRoot(n,p::N) quadraticNorm(f:UP):F == norm(f,2) infinityNorm(f:UP):F == n : F := 0 for c in coefficients f repeat n := max(n,c::F) n singleFactorBound(p:UP,r:N):Z == -- See [6] n : N := degree p r := max(2,r) n < r => error "singleFactorBound: Bad arguments." nf : F := n :: F num : F := nthRoot(bombieriNorm(p),r) if F has Gamma: F -> F then num := num*nthRoot(Gamma(nf+1$F),2*r) den : F := Gamma(nf/((2*r)::F)+1$F) else num := num*(2::F)**(5/8+n/2)*exp(1$F/(4*nf)) den : F := (pi()$F*nf)**(3/8) safeFloor( num/den ) singleFactorBound(p:UP):Z == singleFactorBound(p,2) -- See [6] rootBound(p:UP):Z == -- See [4] and [5] n := degree p zero? n => 0 lc := abs(leadingCoefficient(p)::F) b1 : F := 0 -- Mignotte b2 : F := 0 -- Knuth b3 : F := 0 -- Zassenhaus in [5] b4 : F := 0 -- Cauchy in [7] c : F := 0 cl : F := 0 for i in 1..n repeat c := abs(coefficient(p,(n-i)::N)::F) b1 := max(b1,c) cl := c/lc b2 := max(b2,nthRoot(cl,i)) b3 := max(b3,nthRoot(cl/pascalTriangle(n,i),i)) b4 := max(b4,nthRoot(n*cl,i)) min(1+safeCeiling(b1/lc),min(safeCeiling(2*b2),min(safeCeiling(b3/ (nthRoot(2::F,n)-1)),safeCeiling(b4)))) beauzamyBound(f:UP):Z == -- See [1] d := degree f zero? d => safeFloor bombieriNorm f safeFloor( (bombieriNorm(f)*(3::F)**(3/4+d/2))/ (2*sqrt(pi()$F*(d::F))) ) bombieriNorm(f:UP,p:P):F == -- See [2] and [3] d := degree f b := abs(coefficient(f,0)::F) if zero? d then return b else b := b**p b := b+abs(leadingCoefficient(f)::F)**p dd := (d-1) quo 2 for i in 1..dd repeat b := b+(abs(coefficient(f,i)::F)**p+abs(coefficient(f,(d-i)::N)::F)**p) /pascalTriangle(d,i) if even? d then dd := dd+1 b := b+abs(coefficient(f, dd::N)::F)**p/pascalTriangle(d,dd) nthRoot(b,p::N) bombieriNorm(f:UP):F == bombieriNorm(f,2) -- See [1] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package GALFACTU GaloisGroupFactorizationUtilities>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}