\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra galfactu.spad}
\author{Frederic Lehobey}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package GALFACTU GaloisGroupFactorizationUtilities}
<<package GALFACTU GaloisGroupFactorizationUtilities>>=
)abbrev package GALFACTU GaloisGroupFactorizationUtilities
++ Author: Frederic Lehobey
++ Date Created: 30 June 1994
++ Date Last Updated: 19 October 1995
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References: 
++ [1] Bernard Beauzamy, Products of polynomials and a priori estimates for
++ coefficients in polynomial decompositions: a sharp result,
++ J. Symbolic Computation (1992) 13, 463-472
++ [2] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in
++ Terms of Bombieri's Norms: I. The Largest Factor,
++ J. Symbolic Computation (1993) 16, 115-130
++ [3] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in
++ Terms of Bombieri's Norms: II. The Smallest Factor,
++ J. Symbolic Computation (1993) 16, 131-145
++ [4] Maurice Mignotte, Some Useful Bounds,
++ Computing, Suppl. 4, 259-263 (1982), Springer-Verlag
++ [5] Donald E. Knuth, The Art of Computer Programming, Vol. 2, (Seminumerical
++ Algorithms) 1st edition, 2nd printing, Addison-Wesley 1971, p. 397-398
++ [6] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial 
++ Factorization: Sharp Bounds, Efficient Algorithms,
++ J. Symbolic Computation (1993) 15, 393-413
++ [7] Augustin-Lux Cauchy, Exercices de Math\'ematiques Quatri\`eme Ann\'ee.
++ De Bure Fr\`eres, Paris 1829 (reprinted Oeuvres, II S\'erie, Tome IX,
++ Gauthier-Villars, Paris, 1891).
++ Description: 
++ \spadtype{GaloisGroupFactorizationUtilities} provides functions
++ that will be used by the factorizer.

GaloisGroupFactorizationUtilities(R,UP,F): Exports == Implementation where
  R : Ring
  UP : UnivariatePolynomialCategory R
  F : Join(FloatingPointSystem,RetractableTo(R),Field,
   TranscendentalFunctionCategory,ElementaryFunctionCategory)
  N ==> NonNegativeInteger
  P ==> PositiveInteger
  Z ==> Integer
 
  Exports ==> with
    beauzamyBound: UP -> Z -- See [1]
      ++ beauzamyBound(p) returns a bound on the larger coefficient of any
      ++ factor of p.
    bombieriNorm: UP -> F -- See [1]
      ++ bombieriNorm(p) returns quadratic Bombieri's norm of p.
    bombieriNorm: (UP,P) -> F -- See [2] and [3]
      ++ bombieriNorm(p,n) returns the nth Bombieri's norm of p.
    rootBound: UP -> Z -- See [4] and [5]
      ++ rootBound(p) returns a bound on the largest norm of the complex roots
      ++ of p.
    singleFactorBound: (UP,N) -> Z -- See [6]
      ++ singleFactorBound(p,r) returns a bound on the infinite norm of
      ++ the factor of p with smallest Bombieri's norm. r is a lower bound
      ++ for the number of factors of p. p shall be of degree higher or equal
      ++ to 2.
    singleFactorBound: UP -> Z -- See [6]
      ++ singleFactorBound(p,r) returns a bound on the infinite norm of
      ++ the factor of p with smallest Bombieri's norm. p shall be of degree
      ++ higher or equal to 2.
    norm: (UP,P) -> F
      ++ norm(f,p) returns the lp norm of the polynomial f.
    quadraticNorm: UP -> F
      ++ quadraticNorm(f) returns the l2 norm of the polynomial f.
    infinityNorm: UP -> F
      ++ infinityNorm(f) returns the maximal absolute value of the coefficients
      ++ of the polynomial f.
    height: UP -> F
      ++ height(p) returns the maximal absolute value of the coefficients of
      ++ the polynomial p.
    length: UP -> F
      ++ length(p) returns the sum of the absolute values of the coefficients
      ++ of the polynomial p.

  Implementation ==> add

    import GaloisGroupUtilities(F)

    height(p:UP):F == infinityNorm(p)

    length(p:UP):F == norm(p,1)

    norm(f:UP,p:P):F ==
      n : F := 0
      for c in coefficients f repeat
        n := n+abs(c::F)**p
      nthRoot(n,p::N)

    quadraticNorm(f:UP):F == norm(f,2)

    infinityNorm(f:UP):F ==
      n : F := 0
      for c in coefficients f repeat
        n := max(n,c::F)
      n

    singleFactorBound(p:UP,r:N):Z == -- See [6]
      n : N := degree p
      r := max(2,r)
      n < r => error "singleFactorBound: Bad arguments."
      nf : F := n :: F
      num : F := nthRoot(bombieriNorm(p),r)
      if F has Gamma: F -> F then
        num := num*nthRoot(Gamma(nf+1$F),2*r)
        den : F := Gamma(nf/((2*r)::F)+1$F)
      else
        num := num*(2::F)**(5/8+n/2)*exp(1$F/(4*nf))
        den : F := (pi()$F*nf)**(3/8)
      safeFloor( num/den )

    singleFactorBound(p:UP):Z == singleFactorBound(p,2) -- See [6]

    rootBound(p:UP):Z == -- See [4] and [5]
      n := degree p
      zero? n => 0
      lc := abs(leadingCoefficient(p)::F)
      b1 : F := 0 -- Mignotte
      b2 : F := 0 -- Knuth
      b3 : F := 0 -- Zassenhaus in [5]
      b4 : F := 0 -- Cauchy in [7]
      c : F := 0
      cl : F := 0
      for i in 1..n repeat
        c := abs(coefficient(p,(n-i)::N)::F)
        b1 := max(b1,c)
        cl := c/lc
        b2 := max(b2,nthRoot(cl,i))
        b3 := max(b3,nthRoot(cl/pascalTriangle(n,i),i))
        b4 := max(b4,nthRoot(n*cl,i))
      min(1+safeCeiling(b1/lc),min(safeCeiling(2*b2),min(safeCeiling(b3/
       (nthRoot(2::F,n)-1)),safeCeiling(b4))))

    beauzamyBound(f:UP):Z == -- See [1]
      d := degree f
      zero? d => safeFloor bombieriNorm f
      safeFloor( (bombieriNorm(f)*(3::F)**(3/4+d/2))/
       (2*sqrt(pi()$F*(d::F))) )

    bombieriNorm(f:UP,p:P):F == -- See [2] and [3]
      d := degree f
      b := abs(coefficient(f,0)::F)
      if zero? d then return b
       else b := b**p
      b := b+abs(leadingCoefficient(f)::F)**p
      dd := (d-1) quo 2
      for i in 1..dd repeat
        b := b+(abs(coefficient(f,i)::F)**p+abs(coefficient(f,(d-i)::N)::F)**p)
         /pascalTriangle(d,i)
      if even? d then
        dd := dd+1
        b := b+abs(coefficient(f, dd::N)::F)**p/pascalTriangle(d,dd)
      nthRoot(b,p::N)

    bombieriNorm(f:UP):F == bombieriNorm(f,2) -- See [1]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package GALFACTU GaloisGroupFactorizationUtilities>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}