\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra galfact.spad} \author{Frederic Lehobey} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package GALFACT GaloisGroupFactorizer} <<package GALFACT GaloisGroupFactorizer>>= )abbrev package GALFACT GaloisGroupFactorizer ++ Author: Frederic Lehobey ++ Date Created: 28 June 1994 ++ Date Last Updated: 11 July 1997 ++ Basic Operations: factor ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: factorization ++ Examples: ++ References: ++ [1] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial ++ Factorization: Sharp Bounds, Efficient Algorithms, ++ J. Symbolic Computation (1993) 15, 393-413 ++ [2] John Brillhart, Note on Irreducibility Testing, ++ Mathematics of Computation, vol. 35, num. 35, Oct. 1980, 1379-1381 ++ [3] David R. Musser, On the Efficiency of a Polynomial Irreducibility Test, ++ Journal of the ACM, Vol. 25, No. 2, April 1978, pp. 271-282 ++ Description: \spadtype{GaloisGroupFactorizer} provides functions ++ to factor resolvents. -- improvements to do : -- + reformulate the lifting problem in completeFactor -- See [1] (hard) -- + implement algorithm RC -- See [1] (easy) -- + use Dedekind's criterion to prove sometimes irreducibility (easy) -- or even to improve early detection of true factors (hard) -- + replace Sets by Bits GaloisGroupFactorizer(UP): Exports == Implementation where Z ==> Integer UP: UnivariatePolynomialCategory Z N ==> NonNegativeInteger P ==> PositiveInteger CYC ==> CyclotomicPolynomialPackage() SUPZ ==> SparseUnivariatePolynomial Z ParFact ==> Record(irr: UP, pow: Z) FinalFact ==> Record(contp: Z, factors: List ParFact) DDRecord ==> Record(factor: UP, degree: Z) -- a Distinct-Degree factor DDList ==> List DDRecord MFact ==> Record(prime: Z,factors: List UP) -- Modular Factors LR ==> Record(left: UP, right: UP) -- Functional decomposition Exports ==> with makeFR: FinalFact -> Factored UP ++ makeFR(flist) turns the final factorization of henselFact into a ++ \spadtype{Factored} object. degreePartition: DDList -> Multiset N ++ degreePartition(ddfactorization) returns the degree partition of ++ the polynomial f modulo p where ddfactorization is the distinct ++ degree factorization of f computed by ++ \spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} ++ for some prime p. musserTrials: () -> P ++ musserTrials() returns the number of primes that are tried in ++ \spadfun{modularFactor}. musserTrials: P -> P ++ musserTrials(n) sets to n the number of primes to be tried in ++ \spadfun{modularFactor} and returns the previous value. stopMusserTrials: () -> P ++ stopMusserTrials() returns the bound on the number of factors for ++ which \spadfun{modularFactor} stops to look for an other prime. You ++ will have to remember that the step of recombining the extraneous ++ factors may take up to \spad{2**stopMusserTrials()} trials. stopMusserTrials: P -> P ++ stopMusserTrials(n) sets to n the bound on the number of factors for ++ which \spadfun{modularFactor} stops to look for an other prime. You ++ will have to remember that the step of recombining the extraneous ++ factors may take up to \spad{2**n} trials. Returns the previous ++ value. numberOfFactors: DDList -> N ++ numberOfFactors(ddfactorization) returns the number of factors of ++ the polynomial f modulo p where ddfactorization is the distinct ++ degree factorization of f computed by ++ \spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} ++ for some prime p. modularFactor: UP -> MFact ++ modularFactor(f) chooses a "good" prime and returns the factorization ++ of f modulo this prime in a form that may be used by ++ \spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero ++ it means that f has been proved to be irreducible over the integers ++ or that f is a unit (i.e. 1 or -1). ++ f shall be primitive (i.e. content(p)=1) and square free (i.e. ++ without repeated factors). useSingleFactorBound?: () -> Boolean ++ useSingleFactorBound?() returns \spad{true} if algorithm with single ++ factor bound is used for factorization, \spad{false} for algorithm ++ with overall bound. useSingleFactorBound: Boolean -> Boolean ++ useSingleFactorBound(b) chooses the algorithm to be used by the ++ factorizers: \spad{true} for algorithm with single ++ factor bound, \spad{false} for algorithm with overall bound. ++ Returns the previous value. useEisensteinCriterion?: () -> Boolean ++ useEisensteinCriterion?() returns \spad{true} if factorizers ++ check Eisenstein's criterion before factoring. useEisensteinCriterion: Boolean -> Boolean ++ useEisensteinCriterion(b) chooses whether factorizers check ++ Eisenstein's criterion before factoring: \spad{true} for ++ using it, \spad{false} else. Returns the previous value. eisensteinIrreducible?: UP -> Boolean ++ eisensteinIrreducible?(p) returns \spad{true} if p can be ++ shown to be irreducible by Eisenstein's criterion, ++ \spad{false} is inconclusive. tryFunctionalDecomposition?: () -> Boolean ++ tryFunctionalDecomposition?() returns \spad{true} if ++ factorizers try functional decomposition of polynomials before ++ factoring them. tryFunctionalDecomposition: Boolean -> Boolean ++ tryFunctionalDecomposition(b) chooses whether factorizers have ++ to look for functional decomposition of polynomials ++ (\spad{true}) or not (\spad{false}). Returns the previous value. factor: UP -> Factored UP ++ factor(p) returns the factorization of p over the integers. factor: (UP,N) -> Factored UP ++ factor(p,r) factorizes the polynomial p using the single factor bound ++ algorithm and knowing that p has at least r factors. factor: (UP,List N) -> Factored UP ++ factor(p,listOfDegrees) factorizes the polynomial p using the single ++ factor bound algorithm and knowing that p has for possible ++ splitting of its degree listOfDegrees. factor: (UP,List N,N) -> Factored UP ++ factor(p,listOfDegrees,r) factorizes the polynomial p using the single ++ factor bound algorithm, knowing that p has for possible ++ splitting of its degree listOfDegrees and that p has at least r ++ factors. factor: (UP,N,N) -> Factored UP ++ factor(p,d,r) factorizes the polynomial p using the single ++ factor bound algorithm, knowing that d divides the degree of all ++ factors of p and that p has at least r factors. factorSquareFree: UP -> Factored UP ++ factorSquareFree(p) returns the factorization of p which is supposed ++ not having any repeated factor (this is not checked). factorSquareFree: (UP,N) -> Factored UP ++ factorSquareFree(p,r) factorizes the polynomial p using the single ++ factor bound algorithm and knowing that p has at least r factors. ++ f is supposed not having any repeated factor (this is not checked). factorSquareFree: (UP,List N) -> Factored UP ++ factorSquareFree(p,listOfDegrees) factorizes the polynomial p using ++ the single factor bound algorithm and knowing that p has for possible ++ splitting of its degree listOfDegrees. ++ f is supposed not having any repeated factor (this is not checked). factorSquareFree: (UP,List N,N) -> Factored UP ++ factorSquareFree(p,listOfDegrees,r) factorizes the polynomial p using ++ the single factor bound algorithm, knowing that p has for possible ++ splitting of its degree listOfDegrees and that p has at least r ++ factors. ++ f is supposed not having any repeated factor (this is not checked). factorSquareFree: (UP,N,N) -> Factored UP ++ factorSquareFree(p,d,r) factorizes the polynomial p using the single ++ factor bound algorithm, knowing that d divides the degree of all ++ factors of p and that p has at least r factors. ++ f is supposed not having any repeated factor (this is not checked). factorOfDegree: (P,UP) -> Union(UP,"failed") ++ factorOfDegree(d,p) returns a factor of p of degree d. factorOfDegree: (P,UP,N) -> Union(UP,"failed") ++ factorOfDegree(d,p,r) returns a factor of p of degree ++ d knowing that p has at least r factors. factorOfDegree: (P,UP,List N) -> Union(UP,"failed") ++ factorOfDegree(d,p,listOfDegrees) returns a factor ++ of p of degree d knowing that p has for possible splitting of its ++ degree listOfDegrees. factorOfDegree: (P,UP,List N,N) -> Union(UP,"failed") ++ factorOfDegree(d,p,listOfDegrees,r) returns a factor ++ of p of degree d knowing that p has for possible splitting of its ++ degree listOfDegrees, and that p has at least r factors. factorOfDegree: (P,UP,List N,N,Boolean) -> Union(UP,"failed") ++ factorOfDegree(d,p,listOfDegrees,r,sqf) returns a ++ factor of p of degree d knowing that p has for possible splitting of ++ its degree listOfDegrees, and that p has at least r factors. ++ If \spad{sqf=true} the polynomial is assumed to be square free (i.e. ++ without repeated factors). henselFact: (UP,Boolean) -> FinalFact ++ henselFact(p,sqf) returns the factorization of p, the result ++ is a Record such that \spad{contp=}content p, ++ \spad{factors=}List of irreducible factors of p with exponent. ++ If \spad{sqf=true} the polynomial is assumed to be square free (i.e. ++ without repeated factors). btwFact: (UP,Boolean,Set N,N) -> FinalFact ++ btwFact(p,sqf,pd,r) returns the factorization of p, the result ++ is a Record such that \spad{contp=}content p, ++ \spad{factors=}List of irreducible factors of p with exponent. ++ If \spad{sqf=true} the polynomial is assumed to be square free (i.e. ++ without repeated factors). ++ pd is the \spadtype{Set} of possible degrees. r is a lower bound for ++ the number of factors of p. Please do not use this function in your ++ code because its design may change. Implementation ==> add fUnion ==> Union("nil", "sqfr", "irred", "prime") FFE ==> Record(flg:fUnion, fctr:UP, xpnt:Z) -- Flag-Factor-Exponent DDFact ==> Record(prime:Z, ddfactors:DDList) -- Distinct Degree Factors HLR ==> Record(plist:List UP, modulo:Z) -- HenselLift Record mussertrials: P := 5 stopmussertrials: P := 8 usesinglefactorbound: Boolean := true tryfunctionaldecomposition: Boolean := true useeisensteincriterion: Boolean := true useEisensteinCriterion?():Boolean == useeisensteincriterion useEisensteinCriterion(b:Boolean):Boolean == (useeisensteincriterion,b) := (b,useeisensteincriterion) b tryFunctionalDecomposition?():Boolean == tryfunctionaldecomposition tryFunctionalDecomposition(b:Boolean):Boolean == (tryfunctionaldecomposition,b) := (b,tryfunctionaldecomposition) b useSingleFactorBound?():Boolean == usesinglefactorbound useSingleFactorBound(b:Boolean):Boolean == (usesinglefactorbound,b) := (b,usesinglefactorbound) b stopMusserTrials():P == stopmussertrials stopMusserTrials(n:P):P == (stopmussertrials,n) := (n,stopmussertrials) n musserTrials():P == mussertrials musserTrials(n:P):P == (mussertrials,n) := (n,mussertrials) n import GaloisGroupFactorizationUtilities(Z,UP,Float) import GaloisGroupPolynomialUtilities(Z,UP) import IntegerPrimesPackage(Z) import IntegerFactorizationPackage(Z) import ModularDistinctDegreeFactorizer(UP) eisensteinIrreducible?(f:UP):Boolean == rf := reductum f c: Z := content rf zero? c => false unit? c => false lc := leadingCoefficient f tc := lc while not zero? rf repeat tc := leadingCoefficient rf rf := reductum rf for p in factors(factor c)$Factored(Z) repeat -- if (one? p.exponent) and (not zero? (lc rem p.factor)) and if (p.exponent = 1) and (not zero? (lc rem p.factor)) and (not zero? (tc rem ((p.factor)**2))) then return true false numberOfFactors(ddlist:DDList):N == n: N := 0 d: Z := 0 for dd in ddlist repeat n := n + zero? (d := degree(dd.factor)::Z) => 1 (d quo dd.degree)::N n -- local function, returns the a Set of shifted elements shiftSet(s:Set N,shift:N):Set N == set [ e+shift for e in parts s ] -- local function, returns the "reductum" of an Integer (as chain of bits) reductum(n:Z):Z == n-shift(1,length(n)-1) -- local function, returns an integer with level lowest bits set to 1 seed(level:Z):Z == shift(1,level)-1 -- local function, returns the next number (as a chain of bit) for -- factor reconciliation of a given level (which is the number of -- extraneaous factors involved) or "End of level" if not any nextRecNum(levels:N,level:Z,n:Z):Union("End of level",Z) == if (l := length n)<levels then return(n+shift(1,l-1)) (n=shift(seed(level),levels-level)) => "End of level" b: Z := 1 lr : Z while ((l-b) = (lr := length(n := reductum n)))@Boolean repeat b := b+1 reductum(n)+shift(seed(b+1),lr) -- local function, return the set of N, 0..n fullSet(n:N):Set N == set [ i for i in 0..n ] modularFactor(p:UP):MFact == -- not one? abs(content(p)) => not (abs(content(p)) = 1) => error "modularFactor: the polynomial is not primitive." zero? (n := degree p) => [0,[p]] -- declarations -- cprime: Z := 2 trials: List DDFact := empty() d: Set N := fullSet(n) dirred: Set N := set [0,n] s: Set N := empty() ddlist: DDList := empty() degfact: N := 0 nf: N := stopmussertrials+1 i: Z -- Musser, see [3] -- diffp := differentiate p for i in 1..mussertrials | nf>stopmussertrials repeat -- test 1: cprime divides leading coefficient -- test 2: "bad" primes: (in future: use Dedekind's Criterion) while (zero? ((leadingCoefficient p) rem cprime)) or (not zero? degree gcd(p,diffp,cprime)) repeat cprime := nextPrime(cprime) ddlist := ddFact(p,cprime) -- degree compatibility: See [3] -- s := set [0] for f in ddlist repeat degfact := f.degree::N if not zero? degfact then for j in 1..(degree(f.factor) quo degfact) repeat s := union(s, shiftSet(s,degfact)) trials := cons([cprime,ddlist]$DDFact,trials) d := intersect(d, s) d = dirred => return [0,[p]] -- p is irreducible cprime := nextPrime(cprime) nf := numberOfFactors ddlist -- choose the one with the smallest number of factors choice := first trials nfc := numberOfFactors(choice.ddfactors) for t in rest trials repeat nf := numberOfFactors(t.ddfactors) if nf<nfc or ((nf=nfc) and (t.prime>choice.prime)) then nfc := nf choice := t cprime := choice.prime -- HenselLift$GHENSEL expects the degree 0 factor first [cprime,separateFactors(choice.ddfactors,cprime)] degreePartition(ddlist:DDList):Multiset N == dp: Multiset N := empty() d: N := 0 dd: N := 0 for f in ddlist repeat zero? (d := degree(f.factor)) => dp := insert!(0,dp) dd := f.degree::N dp := insert!(dd,dp,d quo dd) dp import GeneralHenselPackage(Z,UP) import UnivariatePolynomialDecompositionPackage(Z,UP) import BrillhartTests(UP) -- See [2] -- local function, finds the factors of f primitive, square-free, with -- positive leading coefficient and non zero trailing coefficient, -- using the overall bound technique. If pdecomp is true then look -- for a functional decomposition of f. henselfact(f:UP,pdecomp:Boolean):List UP == if brillhartIrreducible? f or (useeisensteincriterion => eisensteinIrreducible? f ; false) then return [f] cf: Union(LR,"failed") if pdecomp and tryfunctionaldecomposition then cf := monicDecomposeIfCan f else cf := "failed" cf case "failed" => m := modularFactor f zero? (cprime := m.prime) => m.factors b: P := (2*leadingCoefficient(f)*beauzamyBound(f)) :: P completeHensel(f,m.factors,cprime,b) lrf := cf::LR "append"/[ henselfact(g(lrf.right),false) for g in henselfact(lrf.left,true) ] -- local function, returns the complete factorization of its arguments, -- using the single-factor bound technique completeFactor(f:UP,lf:List UP,cprime:Z,pk:P,r:N,d:Set N):List UP == lc := leadingCoefficient f f0 := coefficient(f,0) ltrue: List UP := empty() found? := true degf: N := 0 degg: N := 0 g0: Z := 0 g: UP := 0 rg: N := 0 nb: Z := 0 lg: List UP := empty() b: P := 1 dg: Set N := empty() llg: HLR := [empty(),0] levels: N := #lf level: Z := 1 ic: Union(Z,"End of level") := 0 i: Z := 0 while level<levels repeat -- try all possible factors with degree in d ic := seed(level) while ((not found?) and (ic case Z)) repeat i := ic::Z degg := 0 g0 := 1 -- LC algorithm for j in 1..levels repeat if bit?(i,j-1) then degg := degg+degree lf.j g0 := g0*coefficient(lf.j,0) -- LC algorithm g0 := symmetricRemainder(lc*g0,pk) -- LC algorithm if member?(degg,d) and (((lc*f0) exquo g0) case Z) then -- LC algorithm g := lc::UP -- build the possible factor -- LC algorithm for j in 1..levels repeat if bit?(i,j-1) then g := g*lf.j g := primitivePart reduction(g,pk) f1 := f exquo g if f1 case UP then -- g is a true factor found? := true -- remove the factors of g from lf nb := 1 for j in 1..levels repeat if bit?(i,j-1) then swap!(lf,j,nb) nb := nb+1 lg := lf lf := rest(lf,level::N) setrest!(rest(lg,(level-1)::N),empty()$List(UP)) f := f1::UP lc := leadingCoefficient f f0 := coefficient(f,0) -- is g irreducible? dg := select(#1<=degg,d) if not(dg=set [0,degg]) then -- implies degg >= 2 rg := max(2,r+level-levels)::N b := (2*leadingCoefficient(g)*singleFactorBound(g,rg)) :: P if b>pk and (not brillhartIrreducible?(g)) and (useeisensteincriterion => not eisensteinIrreducible?(g) ; true) then -- g may be reducible llg := HenselLift(g,lg,cprime,b) gpk: P := (llg.modulo)::P -- In case exact factorisation has been reached by -- HenselLift before coefficient bound. if gpk<b then lg := llg.plist else lg := completeFactor(g,llg.plist,cprime,gpk,rg,dg) else lg := [ g ] -- g irreducible else lg := [ g ] -- g irreducible ltrue := append(ltrue,lg) r := max(2,(r-#lg))::N degf := degree f d := select(#1<=degf,d) if degf<=1 then -- lf exhausted -- if one? degf then if (degf = 1) then ltrue := cons(f,ltrue) return ltrue -- 1st exit, all factors found else -- can we go on with the same pk? b := (2*lc*singleFactorBound(f,r)) :: P if b>pk then -- unlucky: no we can't llg := HenselLift(f,lf,cprime,b) -- I should reformulate -- the lifting probleme, but hadn't time for that. -- In any case, such case should be quite exceptional. lf := llg.plist pk := (llg.modulo)::P -- In case exact factorisation has been reached by -- HenselLift before coefficient bound. if pk<b then return append(lf,ltrue) -- 2nd exit level := 1 ic := nextRecNum(levels,level,i) if found? then levels := #lf found? := false if not (ic case Z) then level := level+1 cons(f,ltrue) -- 3rd exit, the last factor was irreducible but not "true" -- local function, returns the set of elements "divided" by an integer divideSet(s:Set N, n:N):Set N == l: List N := [ 0 ] for e in parts s repeat if (ee := (e exquo n)$N) case N then l := cons(ee::N,l) set(l) -- Beauzamy-Trevisan-Wang FACTOR, see [1] with some refinements -- and some differences. f is assumed to be primitive, square-free -- and with positive leading coefficient. If pdecomp is true then -- look for a functional decomposition of f. btwFactor(f:UP,d:Set N,r:N,pdecomp:Boolean):List UP == df := degree f not (max(d) = df) => error "btwFact: Bad arguments" reverse?: Boolean := false negativelc?: Boolean := false (d = set [0,df]) => [ f ] if abs(coefficient(f,0))<abs(leadingCoefficient(f)) then f := reverse f reverse? := true brillhartIrreducible? f or (useeisensteincriterion => eisensteinIrreducible?(f) ; false) => if reverse? then [ reverse f ] else [ f ] if leadingCoefficient(f)<0 then f := -f negativelc? := true cf: Union(LR,"failed") if pdecomp and tryfunctionaldecomposition then cf := monicDecomposeIfCan f else cf := "failed" if cf case "failed" then m := modularFactor f zero? (cprime := m.prime) => if reverse? then if negativelc? then return [ -reverse f ] else return [ reverse f ] else if negativelc? then return [ -f ] else return [ f ] if noLinearFactor? f then d := remove(1,d) lc := leadingCoefficient f f0 := coefficient(f,0) b: P := (2*lc*singleFactorBound(f,r)) :: P -- LC algorithm lm := HenselLift(f,m.factors,cprime,b) lf := lm.plist pk: P := (lm.modulo)::P if ground? first lf then lf := rest lf -- in case exact factorisation has been reached by HenselLift -- before coefficient bound if not pk < b then lf := completeFactor(f,lf,cprime,pk,r,d) else lrf := cf::LR dh := degree lrf.right lg := btwFactor(lrf.left,divideSet(d,dh),2,true) lf: List UP := empty() for i in 1..#lg repeat g := lg.i dgh := (degree g)*dh df := subtractIfCan(df,dgh)::N lfg := btwFactor(g(lrf.right), select(#1<=dgh,d),max(2,r-df)::N,false) lf := append(lf,lfg) r := max(2,r-#lfg)::N if reverse? then lf := [ reverse(fact) for fact in lf ] for i in 1..#lf repeat if leadingCoefficient(lf.i)<0 then lf.i := -lf.i -- because we assume f with positive leading coefficient lf makeFR(flist:FinalFact):Factored UP == ctp := factor flist.contp fflist: List FFE := empty() for ff in flist.factors repeat fflist := cons(["prime", ff.irr, ff.pow]$FFE, fflist) for fc in factorList ctp repeat fflist := cons([fc.flg, fc.fctr::UP, fc.xpnt]$FFE, fflist) makeFR(unit(ctp)::UP, fflist) import IntegerRoots(Z) -- local function, factorizes a quadratic polynomial quadratic(p:UP):List UP == a := leadingCoefficient p b := coefficient(p,1) d := b**2-4*a*coefficient(p,0) r := perfectSqrt(d) r case "failed" => [p] b := b+(r::Z) a := 2*a d := gcd(a,b) -- if not one? d then if not (d = 1) then a := a quo d b := b quo d f: UP := monomial(a,1)+monomial(b,0) cons(f,[(p exquo f)::UP]) isPowerOf2(n:Z): Boolean == n = 1 => true qr: Record(quotient: Z, remainder: Z) := divide(n,2) qr.remainder = 1 => false isPowerOf2 qr.quotient subMinusX(supPol: SUPZ): UP == minusX: SUPZ := monomial(-1,1)$SUPZ unmakeSUP(elt(supPol,minusX)$SUPZ) henselFact(f:UP, sqf:Boolean):FinalFact == factorlist: List(ParFact) := empty() -- make m primitive c: Z := content f f := (f exquo c)::UP -- make the leading coefficient positive if leadingCoefficient f < 0 then c := -c f := -f -- is x**d factor of f if (d := minimumDegree f) > 0 then f := monicDivide(f,monomial(1,d)).quotient factorlist := [[monomial(1,1),d]$ParFact] d := degree f -- is f constant? zero? d => [c,factorlist]$FinalFact -- is f linear? -- one? d => [c,cons([f,1]$ParFact,factorlist)]$FinalFact (d = 1) => [c,cons([f,1]$ParFact,factorlist)]$FinalFact lcPol: UP := leadingCoefficient(f) :: UP -- is f cyclotomic (x**n - 1)? -lcPol = reductum(f) => -- if true, both will = 1 for fac in map(unmakeSUP(#1)$UP, cyclotomicDecomposition(d)$CYC)$ListFunctions2(SUPZ,UP) repeat factorlist := cons([fac,1]$ParFact,factorlist) [c,factorlist]$FinalFact -- is f odd cyclotomic (x**(2*n+1) + 1)? odd?(d) and (lcPol = reductum(f)) => for sfac in cyclotomicDecomposition(d)$CYC repeat fac := subMinusX sfac if leadingCoefficient fac < 0 then fac := -fac factorlist := cons([fac,1]$ParFact,factorlist) [c,factorlist]$FinalFact -- is the poly of the form x**n + 1 with n a power of 2? -- if so, then irreducible isPowerOf2(d) and (lcPol = reductum(f)) => factorlist := cons([f,1]$ParFact,factorlist) [c,factorlist]$FinalFact -- other special cases to implement... -- f is square-free : sqf => [c, append([[pf,1]$ParFact for pf in henselfact(f,true)], factorlist)]$FinalFact -- f is not square-free : sqfflist := factors squareFree f for sqfr in sqfflist repeat mult := sqfr.exponent sqff := sqfr.factor d := degree sqff -- one? d => factorlist := cons([sqff,mult]$ParFact,factorlist) (d = 1) => factorlist := cons([sqff,mult]$ParFact,factorlist) d=2 => factorlist := append([[pf,mult]$ParFact for pf in quadratic(sqff)], factorlist) factorlist := append([[pf,mult]$ParFact for pf in henselfact(sqff,true)],factorlist) [c,factorlist]$FinalFact btwFact(f:UP, sqf:Boolean, fd:Set N, r:N):FinalFact == d := degree f not(max(fd)=d) => error "btwFact: Bad arguments" factorlist: List(ParFact) := empty() -- make m primitive c: Z := content f f := (f exquo c)::UP -- make the leading coefficient positive if leadingCoefficient f < 0 then c := -c f := -f -- is x**d factor of f if (maxd := minimumDegree f) > 0 then f := monicDivide(f,monomial(1,maxd)).quotient factorlist := [[monomial(1,1),maxd]$ParFact] r := max(2,r-maxd)::N d := subtractIfCan(d,maxd)::N fd := select(#1<=d,fd) -- is f constant? zero? d => [c,factorlist]$FinalFact -- is f linear? -- one? d => [c,cons([f,1]$ParFact,factorlist)]$FinalFact (d = 1) => [c,cons([f,1]$ParFact,factorlist)]$FinalFact lcPol: UP := leadingCoefficient(f) :: UP -- is f cyclotomic (x**n - 1)? -lcPol = reductum(f) => -- if true, both will = 1 for fac in map(unmakeSUP(#1)$UP, cyclotomicDecomposition(d)$CYC)$ListFunctions2(SUPZ,UP) repeat factorlist := cons([fac,1]$ParFact,factorlist) [c,factorlist]$FinalFact -- is f odd cyclotomic (x**(2*n+1) + 1)? odd?(d) and (lcPol = reductum(f)) => for sfac in cyclotomicDecomposition(d)$CYC repeat fac := subMinusX sfac if leadingCoefficient fac < 0 then fac := -fac factorlist := cons([fac,1]$ParFact,factorlist) [c,factorlist]$FinalFact -- is the poly of the form x**n + 1 with n a power of 2? -- if so, then irreducible isPowerOf2(d) and (lcPol = reductum(f)) => factorlist := cons([f,1]$ParFact,factorlist) [c,factorlist]$FinalFact -- other special cases to implement... -- f is square-free : sqf => [c, append([[pf,1]$ParFact for pf in btwFactor(f,fd,r,true)], factorlist)]$FinalFact -- f is not square-free : sqfflist := factors squareFree(f) -- if one?(#(sqfflist)) then -- indeed f was a power of a square-free if ((#(sqfflist)) = 1) then -- indeed f was a power of a square-free r := max(r quo ((first sqfflist).exponent),2)::N else r := 2 for sqfr in sqfflist repeat mult := sqfr.exponent sqff := sqfr.factor d := degree sqff -- one? d => (d = 1) => factorlist := cons([sqff,mult]$ParFact,factorlist) maxd := (max(fd)-mult)::N fd := select(#1<=maxd,fd) d=2 => factorlist := append([[pf,mult]$ParFact for pf in quadratic(sqff)], factorlist) maxd := (max(fd)-2*mult)::N fd := select(#1<=maxd,fd) factorlist := append([[pf,mult]$ParFact for pf in btwFactor(sqff,select(#1<=d,fd),r,true)],factorlist) maxd := (max(fd)-d*mult)::N fd := select(#1<=maxd,fd) [c,factorlist]$FinalFact factor(f:UP):Factored UP == makeFR usesinglefactorbound => btwFact(f,false,fullSet(degree f),2) henselFact(f,false) -- local function, returns true if the sum of the elements of the list -- is not the degree. errorsum?(d:N,ld:List N):Boolean == not (d = +/ld) -- local function, turns list of degrees into a Set makeSet(ld:List N):Set N == s := set [0] for d in ld repeat s := union(s,shiftSet(s,d)) s factor(f:UP,ld:List N,r:N):Factored UP == errorsum?(degree f,ld) => error "factor: Bad arguments" makeFR btwFact(f,false,makeSet(ld),r) factor(f:UP,r:N):Factored UP == makeFR btwFact(f,false,fullSet(degree f),r) factor(f:UP,ld:List N):Factored UP == factor(f,ld,2) factor(f:UP,d:N,r:N):Factored UP == n := (degree f) exquo d n case "failed" => error "factor: Bad arguments" factor(f,new(n::N,d)$List(N),r) factorSquareFree(f:UP):Factored UP == makeFR usesinglefactorbound => btwFact(f,true,fullSet(degree f),2) henselFact(f,true) factorSquareFree(f:UP,ld:List(N),r:N):Factored UP == errorsum?(degree f,ld) => error "factorSquareFree: Bad arguments" makeFR btwFact(f,true,makeSet(ld),r) factorSquareFree(f:UP,r:N):Factored UP == makeFR btwFact(f,true,fullSet(degree f),r) factorSquareFree(f:UP,ld:List N):Factored UP == factorSquareFree(f,ld,2) factorSquareFree(f:UP,d:N,r:N):Factored UP == n := (degree f) exquo d n case "failed" => error "factorSquareFree: Bad arguments" factorSquareFree(f,new(n::N,d)$List(N),r) factorOfDegree(d:P,p:UP,ld:List N,r:N,sqf:Boolean):Union(UP,"failed") == dp := degree p errorsum?(dp,ld) => error "factorOfDegree: Bad arguments" -- (one? (d::N)) and noLinearFactor?(p) => "failed" ((d::N) = 1) and noLinearFactor?(p) => "failed" lf := btwFact(p,sqf,makeSet(ld),r).factors for f in lf repeat degree(f.irr)=d => return f.irr "failed" factorOfDegree(d:P,p:UP,ld:List N,r:N):Union(UP,"failed") == factorOfDegree(d,p,ld,r,false) factorOfDegree(d:P,p:UP,r:N):Union(UP,"failed") == factorOfDegree(d,p,new(degree p,1)$List(N),r,false) factorOfDegree(d:P,p:UP,ld:List N):Union(UP,"failed") == factorOfDegree(d,p,ld,2,false) factorOfDegree(d:P,p:UP):Union(UP,"failed") == factorOfDegree(d,p,new(degree p,1)$List(N),2,false) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package GALFACT GaloisGroupFactorizer>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}