\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra fs2expxp.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package FS2EXPXP FunctionSpaceToExponentialExpansion}
<<package FS2EXPXP FunctionSpaceToExponentialExpansion>>=
)abbrev package FS2EXPXP FunctionSpaceToExponentialExpansion
++ Author: Clifton J. Williamson
++ Date Created: 17 August 1992
++ Date Last Updated: 2 December 1994
++ Basic Operations:
++ Related Domains: ExponentialExpansion, UnivariatePuiseuxSeries(FE,x,cen)
++ Also See: FunctionSpaceToUnivariatePowerSeries
++ AMS Classifications:
++ Keywords: elementary function, power series
++ Examples:
++ References:
++ Description:
++   This package converts expressions in some function space to exponential
++   expansions.
FunctionSpaceToExponentialExpansion(R,FE,x,cen):_
     Exports == Implementation where
  R     : Join(GcdDomain,RetractableTo Integer,_
               LinearlyExplicitRingOver Integer)
  FE    : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_
               FunctionSpace R)
  x     : Symbol
  cen   : FE
  B        ==> Boolean
  BOP      ==> BasicOperator
  Expon    ==> Fraction Integer
  I        ==> Integer
  NNI      ==> NonNegativeInteger
  K        ==> Kernel FE
  L        ==> List
  RN       ==> Fraction Integer
  S        ==> String
  SY       ==> Symbol
  PCL      ==> PolynomialCategoryLifting(IndexedExponents K,K,R,SMP,FE)
  POL      ==> Polynomial R
  SMP      ==> SparseMultivariatePolynomial(R,K)
  SUP      ==> SparseUnivariatePolynomial Polynomial R
  UTS      ==> UnivariateTaylorSeries(FE,x,cen)
  ULS      ==> UnivariateLaurentSeries(FE,x,cen)
  UPXS     ==> UnivariatePuiseuxSeries(FE,x,cen)
  EFULS    ==> ElementaryFunctionsUnivariateLaurentSeries(FE,UTS,ULS)
  EFUPXS   ==> ElementaryFunctionsUnivariatePuiseuxSeries(FE,ULS,UPXS,EFULS)
  FS2UPS   ==> FunctionSpaceToUnivariatePowerSeries(R,FE,RN,UPXS,EFUPXS,x)
  EXPUPXS  ==> ExponentialOfUnivariatePuiseuxSeries(FE,x,cen)
  UPXSSING ==> UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,x,cen)
  XXP      ==> ExponentialExpansion(R,FE,x,cen)
  Problem  ==> Record(func:String,prob:String)
  Result   ==> Union(%series:UPXS,%problem:Problem)
  XResult  ==> Union(%expansion:XXP,%problem:Problem)
  SIGNEF   ==> ElementaryFunctionSign(R,FE)

  Exports ==> with
    exprToXXP : (FE,B) -> XResult
      ++ exprToXXP(fcn,posCheck?) converts the expression \spad{fcn} to
      ++ an exponential expansion.  If \spad{posCheck?} is true,
      ++ log's of negative numbers are not allowed nor are nth roots of
      ++ negative numbers with n even.  If \spad{posCheck?} is false,
      ++ these are allowed.
    localAbs: FE -> FE
      ++ localAbs(fcn) = \spad{abs(fcn)} or \spad{sqrt(fcn**2)} depending
      ++ on whether or not FE has a function \spad{abs}.  This should be
      ++ a local function, but the compiler won't allow it.

  Implementation ==> add

    import FS2UPS  -- conversion of functional expressions to Puiseux series
    import EFUPXS  -- partial transcendental funtions on UPXS

    ratIfCan            : FE -> Union(RN,"failed")
    stateSeriesProblem  : (S,S) -> Result
    stateProblem        : (S,S) -> XResult
    newElem             : FE -> FE
    smpElem             : SMP -> FE
    k2Elem              : K -> FE
    iExprToXXP          : (FE,B) -> XResult
    listToXXP           : (L FE,B,XXP,(XXP,XXP) -> XXP) -> XResult
    isNonTrivPower      : FE -> Union(Record(val:FE,exponent:I),"failed")
    negativePowerOK?    : UPXS -> Boolean
    powerToXXP          : (FE,I,B) -> XResult
    carefulNthRootIfCan : (UPXS,NNI,B) -> Result
    nthRootXXPIfCan     : (XXP,NNI,B) -> XResult
    nthRootToXXP        : (FE,NNI,B) -> XResult
    genPowerToXXP       : (L FE,B) -> XResult
    kernelToXXP         : (K,B) -> XResult
    genExp              : (UPXS,B) -> Result
    exponential         : (UPXS,B) -> XResult
    expToXXP            : (FE,B) -> XResult
    genLog              : (UPXS,B) -> Result
    logToXXP            : (FE,B) -> XResult
    applyIfCan          : (UPXS -> Union(UPXS,"failed"),FE,S,B) -> XResult
    applyBddIfCan       : (FE,UPXS -> Union(UPXS,"failed"),FE,S,B) -> XResult
    tranToXXP           : (K,FE,B) -> XResult
    contOnReals?        : S -> B
    bddOnReals?         : S -> B
    opsInvolvingX       : FE -> L BOP
    opInOpList?         : (SY,L BOP) -> B
    exponential?        : FE -> B
    productOfNonZeroes? : FE -> B
    atancotToXXP        : (FE,FE,B,I) -> XResult

    ZEROCOUNT : RN := 1000/1
    -- number of zeroes to be removed when taking logs or nth roots

--% retractions

    ratIfCan fcn == retractIfCan(fcn)@Union(RN,"failed")

--% 'problems' with conversion

    stateSeriesProblem(function,problem) ==
      -- records the problem which occured in converting an expression
      -- to a power series
      [[function,problem]]

    stateProblem(function,problem) ==
      -- records the problem which occured in converting an expression
      -- to an exponential expansion
      [[function,problem]]

--% normalizations

    newElem f ==
      -- rewrites a functional expression; all trig functions are
      -- expressed in terms of sin and cos; all hyperbolic trig
      -- functions are expressed in terms of exp; all inverse
      -- hyperbolic trig functions are expressed in terms of exp
      -- and log
      smpElem(numer f) / smpElem(denom f)

    smpElem p == map(k2Elem,#1::FE,p)$PCL

    k2Elem k ==
    -- rewrites a kernel; all trig functions are
    -- expressed in terms of sin and cos; all hyperbolic trig
    -- functions are expressed in terms of exp
      null(args := [newElem a for a in argument k]) => k :: FE
      iez  := inv(ez  := exp(z := first args))
      sinz := sin z; cosz := cos z
      is?(k,"tan" :: SY)  => sinz / cosz
      is?(k,"cot" :: SY)  => cosz / sinz
      is?(k,"sec" :: SY)  => inv cosz
      is?(k,"csc" :: SY)  => inv sinz
      is?(k,"sinh" :: SY) => (ez - iez) / (2 :: FE)
      is?(k,"cosh" :: SY) => (ez + iez) / (2 :: FE)
      is?(k,"tanh" :: SY) => (ez - iez) / (ez + iez)
      is?(k,"coth" :: SY) => (ez + iez) / (ez - iez)
      is?(k,"sech" :: SY) => 2 * inv(ez + iez)
      is?(k,"csch" :: SY) => 2 * inv(ez - iez)
      is?(k,"acosh" :: SY) => log(sqrt(z**2 - 1) + z)
      is?(k,"atanh" :: SY) => log((z + 1) / (1 - z)) / (2 :: FE)
      is?(k,"acoth" :: SY) => log((z + 1) / (z - 1)) / (2 :: FE)
      is?(k,"asech" :: SY) => log((inv z) + sqrt(inv(z**2) - 1))
      is?(k,"acsch" :: SY) => log((inv z) + sqrt(1 + inv(z**2)))
      (operator k) args

--% general conversion function

    exprToXXP(fcn,posCheck?) == iExprToXXP(newElem fcn,posCheck?)

    iExprToXXP(fcn,posCheck?) ==
      -- converts a functional expression to an exponential expansion
      --!! The following line is commented out so that expressions of
      --!! the form a**b will be normalized to exp(b * log(a)) even if
      --!! 'a' and 'b' do not involve the limiting variable 'x'.
      --!!                         - cjw 1 Dec 94
      --not member?(x,variables fcn) => [monomial(fcn,0)$UPXS :: XXP]
      (poly := retractIfCan(fcn)@Union(POL,"failed")) case POL =>
        [exprToUPS(fcn,false,"real:two sides").%series :: XXP]
      (sum := isPlus fcn) case L(FE) =>
        listToXXP(sum :: L(FE),posCheck?,0,#1 + #2)
      (prod := isTimes fcn) case L(FE) =>
        listToXXP(prod :: L(FE),posCheck?,1,#1 * #2)
      (expt := isNonTrivPower fcn) case Record(val:FE,exponent:I) =>
        power := expt :: Record(val:FE,exponent:I)
        powerToXXP(power.val,power.exponent,posCheck?)
      (ker := retractIfCan(fcn)@Union(K,"failed")) case K =>
        kernelToXXP(ker :: K,posCheck?)
      error "exprToXXP: neither a sum, product, power, nor kernel"

--% sums and products

    listToXXP(list,posCheck?,ans,op) ==
      -- converts each element of a list of expressions to an exponential
      -- expansion and returns the sum of these expansions, when 'op' is +
      -- and 'ans' is 0, or the product of these expansions, when 'op' is *
      -- and 'ans' is 1
      while not null list repeat
        (term := iExprToXXP(first list,posCheck?)) case %problem =>
          return term
        ans := op(ans,term.%expansion)
        list := rest list
      [ans]

--% nth roots and integral powers

    isNonTrivPower fcn ==
      -- is the function a power with exponent other than 0 or 1?
      (expt := isPower fcn) case "failed" => "failed"
      power := expt :: Record(val:FE,exponent:I)
      one? power.exponent => "failed"
      power

    negativePowerOK? upxs ==
      -- checks the lower order coefficient of a Puiseux series;
      -- the coefficient may be inverted only if
      -- (a) the only function involving x is 'log', or
      -- (b) the lowest order coefficient is a product of exponentials
      --     and functions not involving x
      deg := degree upxs
      if (coef := coefficient(upxs,deg)) = 0 then
        deg := order(upxs,deg + ZEROCOUNT :: Expon)
        (coef := coefficient(upxs,deg)) = 0 =>
          error "inverse of series with many leading zero coefficients"
      xOpList := opsInvolvingX coef
      -- only function involving x is 'log'
      (null xOpList) => true
      (null rest xOpList and is?(first xOpList,"log" :: SY)) => true
      -- lowest order coefficient is a product of exponentials and
      -- functions not involving x
      productOfNonZeroes? coef => true
      false

    powerToXXP(fcn,n,posCheck?) ==
      -- converts an integral power to an exponential expansion
      (b := iExprToXXP(fcn,posCheck?)) case %problem => b
      xxp := b.%expansion
      n > 0 => [xxp ** n]
      -- a Puiseux series will be reciprocated only if n < 0 and
      -- numerator of 'xxp' has exactly one monomial
      numberOfMonomials(num := numer xxp) > 1 => [xxp ** n]
      negativePowerOK? leadingCoefficient num =>
        (rec := recip num) case "failed" => error "FS2EXPXP: can't happen"
        nn := (-n) :: NNI
        [(((denom xxp) ** nn) * ((rec :: UPXSSING) ** nn)) :: XXP]
      --!! we may want to create a fraction instead of trying to
      --!! reciprocate the numerator
      stateProblem("inv","lowest order coefficient involves x")

    carefulNthRootIfCan(ups,n,posCheck?) ==
      -- similar to 'nthRootIfCan', but it is fussy about the series
      -- it takes as an argument.  If 'n' is EVEN and 'posCheck?'
      -- is truem then the leading coefficient of the series must
      -- be POSITIVE.  In this case, if 'rightOnly?' is false, the
      -- order of the series must be zero.  The idea is that the
      -- series represents a real function of a real variable, and
      -- we want a unique real nth root defined on a neighborhood
      -- of zero.
      n < 1 => error "nthRoot: n must be positive"
      deg := degree ups
      if (coef := coefficient(ups,deg)) = 0 then
        deg := order(ups,deg + ZEROCOUNT :: Expon)
        (coef := coefficient(ups,deg)) = 0 =>
          error "log of series with many leading zero coefficients"
      -- if 'posCheck?' is true, we do not allow nth roots of negative
      -- numbers when n in even
      if even?(n :: I) then
        if posCheck? and ((signum := sign(coef)$SIGNEF) case I) then
          (signum :: I) = -1 =>
            return stateSeriesProblem("nth root","root of negative number")
      (ans := nthRootIfCan(ups,n)) case "failed" =>
        stateSeriesProblem("nth root","no nth root")
      [ans :: UPXS]

    nthRootXXPIfCan(xxp,n,posCheck?) ==
      num := numer xxp; den := denom xxp
      not zero?(reductum num) or not zero?(reductum den) =>
       stateProblem("nth root","several monomials in numerator or denominator")
      nInv : RN := 1/n
      newNum :=
        coef : UPXS :=
          root := carefulNthRootIfCan(leadingCoefficient num,n,posCheck?)
          root case %problem => return [root.%problem]
          root.%series
        deg := (nInv :: FE) * (degree num)
        monomial(coef,deg)
      newDen :=
        coef : UPXS :=
          root := carefulNthRootIfCan(leadingCoefficient den,n,posCheck?)
          root case %problem => return [root.%problem]
          root.%series
        deg := (nInv :: FE) * (degree den)
        monomial(coef,deg)
      [newNum/newDen]

    nthRootToXXP(arg,n,posCheck?) ==
      -- converts an nth root to a power series
      -- this is not used in the limit package, so the series may
      -- have non-zero order, in which case nth roots may not be unique
      (result := iExprToXXP(arg,posCheck?)) case %problem => [result.%problem]
      ans := nthRootXXPIfCan(result.%expansion,n,posCheck?)
      ans case %problem => [ans.%problem]
      [ans.%expansion]

--% general powers f(x) ** g(x)

    genPowerToXXP(args,posCheck?) ==
      -- converts a power f(x) ** g(x) to an exponential expansion
      (logBase := logToXXP(first args,posCheck?)) case %problem =>
        logBase
      (expon := iExprToXXP(second args,posCheck?)) case %problem =>
        expon
      xxp := (expon.%expansion) * (logBase.%expansion)
      (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
        stateProblem("exp","multiply nested exponential")
      exponential(f,posCheck?)

--% kernels

    kernelToXXP(ker,posCheck?) ==
      -- converts a kernel to a power series
      (sym := symbolIfCan(ker)) case Symbol =>
        (sym :: Symbol) = x => [monomial(1,1)$UPXS :: XXP]
        [monomial(ker :: FE,0)$UPXS :: XXP]
      empty?(args := argument ker) => [monomial(ker :: FE,0)$UPXS :: XXP]
      empty? rest args =>
        arg := first args
        is?(ker,"%paren" :: Symbol) => iExprToXXP(arg,posCheck?)
        is?(ker,"log" :: Symbol) => logToXXP(arg,posCheck?)
        is?(ker,"exp" :: Symbol) => expToXXP(arg,posCheck?)
        tranToXXP(ker,arg,posCheck?)
      is?(ker,"%power" :: Symbol) => genPowerToXXP(args,posCheck?)
      is?(ker,"nthRoot" :: Symbol) =>
        n := retract(second args)@I
        nthRootToXXP(first args,n :: NNI,posCheck?)
      stateProblem(string name operator ker,"unknown kernel")

--% exponentials and logarithms

    genExp(ups,posCheck?) ==
      -- If the series has order zero and the constant term a0 of the
      -- series involves x, the function tries to expand exp(a0) as
      -- a power series.
      (deg := order(ups,1)) < 0 =>
        -- this "can't happen"
        error "exp of function with sigularity"
      deg > 0 => [exp(ups)]
      lc := coefficient(ups,0); varOpList := opsInvolvingX lc
      not opInOpList?("log" :: Symbol,varOpList) => [exp(ups)]
      -- try to fix exp(lc) if necessary
      expCoef := normalize(exp lc,x)$ElementaryFunctionStructurePackage(R,FE)
      result := exprToGenUPS(expCoef,posCheck?,"real:right side")$FS2UPS
      --!! will deal with problems in limitPlus in EXPEXPAN
      --result case %problem => result
      result case %problem => [exp(ups)]
      [(result.%series) * exp(ups - monomial(lc,0))]

    exponential(f,posCheck?) ==
      singPart := truncate(f,0) - (coefficient(f,0) :: UPXS)
      taylorPart := f - singPart
      expon := exponential(singPart)$EXPUPXS
      (coef := genExp(taylorPart,posCheck?)) case %problem => [coef.%problem]
      [monomial(coef.%series,expon)$UPXSSING :: XXP]

    expToXXP(arg,posCheck?) ==
      (result := iExprToXXP(arg,posCheck?)) case %problem => result
      xxp := result.%expansion
      (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
        stateProblem("exp","multiply nested exponential")
      exponential(f,posCheck?)

    genLog(ups,posCheck?) ==
      deg := degree ups
      if (coef := coefficient(ups,deg)) = 0 then
        deg := order(ups,deg + ZEROCOUNT)
        (coef := coefficient(ups,deg)) = 0 =>
          error "log of series with many leading zero coefficients"
      -- if 'posCheck?' is true, we do not allow logs of negative numbers
      if posCheck? then
        if ((signum := sign(coef)$SIGNEF) case I) then
          (signum :: I) = -1 =>
            return stateSeriesProblem("log","negative leading coefficient")
      lt := monomial(coef,deg)$UPXS
      -- check to see if lowest order coefficient is a negative rational
      negRat? : Boolean :=
        ((rat := ratIfCan coef) case RN) =>
          (rat :: RN) < 0 => true
          false
        false
      logTerm : FE :=
        mon : FE := (x :: FE) - (cen :: FE)
        pow : FE := mon ** (deg :: FE)
        negRat? => log(coef * pow)
        term1 : FE := (deg :: FE) * log(mon)
        log(coef) + term1
      [monomial(logTerm,0)$UPXS + log(ups/lt)]

    logToXXP(arg,posCheck?) ==
      (result := iExprToXXP(arg,posCheck?)) case %problem => result
      xxp := result.%expansion
      num := numer xxp; den := denom xxp
      not zero?(reductum num) or not zero?(reductum den) =>
        stateProblem("log","several monomials in numerator or denominator")
      numCoefLog : UPXS :=
        (res := genLog(leadingCoefficient num,posCheck?)) case %problem =>
          return [res.%problem]
        res.%series
      denCoefLog : UPXS :=
        (res := genLog(leadingCoefficient den,posCheck?)) case %problem =>
          return [res.%problem]
        res.%series
      numLog := (exponent degree num) + numCoefLog
      denLog := (exponent degree den) + denCoefLog  --?? num?
      [(numLog - denLog) :: XXP]

--% other transcendental functions

    applyIfCan(fcn,arg,fcnName,posCheck?) ==
      -- converts fcn(arg) to an exponential expansion
      (xxpArg := iExprToXXP(arg,posCheck?)) case %problem => xxpArg
      xxp := xxpArg.%expansion
      (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
        stateProblem(fcnName,"multiply nested exponential")
      upxs := f :: UPXS
      (deg := order(upxs,1)) < 0 =>
        stateProblem(fcnName,"essential singularity")
      deg > 0 => [fcn(upxs) :: UPXS :: XXP]
      lc := coefficient(upxs,0); xOpList := opsInvolvingX lc
      null xOpList => [fcn(upxs) :: UPXS :: XXP]
      opInOpList?("log" :: SY,xOpList) =>
        stateProblem(fcnName,"logs in constant coefficient")
      contOnReals? fcnName => [fcn(upxs) :: UPXS :: XXP]
      stateProblem(fcnName,"x in constant coefficient")

    applyBddIfCan(fe,fcn,arg,fcnName,posCheck?) ==
      -- converts fcn(arg) to a generalized power series, where the
      -- function fcn is bounded for real values
      -- if fcn(arg) has an essential singularity as a complex
      -- function, we return fcn(arg) as a monomial of degree 0
      (xxpArg := iExprToXXP(arg,posCheck?)) case %problem =>
        trouble := xxpArg.%problem
        trouble.prob = "essential singularity" => [monomial(fe,0)$UPXS :: XXP]
        xxpArg
      xxp := xxpArg.%expansion
      (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
        stateProblem("exp","multiply nested exponential")
      (ans := fcn(f :: UPXS)) case "failed" => [monomial(fe,0)$UPXS :: XXP]
      [ans :: UPXS :: XXP]

    CONTFCNS : L S := ["sin","cos","atan","acot","exp","asinh"]
    -- functions which are defined and continuous at all real numbers

    BDDFCNS : L S := ["sin","cos","atan","acot"]
    -- functions which are bounded on the reals

    contOnReals? fcn == member?(fcn,CONTFCNS)
    bddOnReals? fcn  == member?(fcn,BDDFCNS)

    opsInvolvingX fcn ==
      opList := [op for k in tower fcn | unary?(op := operator k) _
                 and member?(x,variables first argument k)]
      removeDuplicates opList

    opInOpList?(name,opList) ==
      for op in opList repeat
        is?(op,name) => return true
      false

    exponential? fcn ==
      -- is 'fcn' of the form exp(f)?
      (ker := retractIfCan(fcn)@Union(K,"failed")) case K =>
        is?(ker :: K,"exp" :: Symbol)
      false

    productOfNonZeroes? fcn ==
      -- is 'fcn' a product of non-zero terms, where 'non-zero'
      -- means an exponential or a function not involving x
      exponential? fcn => true
      (prod := isTimes fcn) case "failed" => false
      for term in (prod :: L(FE)) repeat
        (not exponential? term) and member?(x,variables term) =>
          return false
      true

    tranToXXP(ker,arg,posCheck?) ==
      -- converts op(arg) to a power series for certain functions
      -- op in trig or hyperbolic trig categories
      -- N.B. when this function is called, 'k2elem' will have been
      -- applied, so the following functions cannot appear:
      -- tan, cot, sec, csc, sinh, cosh, tanh, coth, sech, csch
      -- acosh, atanh, acoth, asech, acsch
      is?(ker,"sin" :: SY) =>
        applyBddIfCan(ker :: FE,sinIfCan,arg,"sin",posCheck?)
      is?(ker,"cos" :: SY) =>
        applyBddIfCan(ker :: FE,cosIfCan,arg,"cos",posCheck?)
      is?(ker,"asin" :: SY) =>
        applyIfCan(asinIfCan,arg,"asin",posCheck?)
      is?(ker,"acos" :: SY) =>
        applyIfCan(acosIfCan,arg,"acos",posCheck?)
      is?(ker,"atan" :: SY) =>
        atancotToXXP(ker :: FE,arg,posCheck?,1)
      is?(ker,"acot" :: SY) =>
        atancotToXXP(ker :: FE,arg,posCheck?,-1)
      is?(ker,"asec" :: SY) =>
        applyIfCan(asecIfCan,arg,"asec",posCheck?)
      is?(ker,"acsc" :: SY) =>
        applyIfCan(acscIfCan,arg,"acsc",posCheck?)
      is?(ker,"asinh" :: SY) =>
        applyIfCan(asinhIfCan,arg,"asinh",posCheck?)
      stateProblem(string name operator ker,"unknown kernel")

    if FE has abs: FE -> FE then
      localAbs fcn == abs fcn
    else
      localAbs fcn == sqrt(fcn * fcn)

    signOfExpression: FE -> FE
    signOfExpression arg == localAbs(arg)/arg

    atancotToXXP(fe,arg,posCheck?,plusMinus) ==
      -- converts atan(f(x)) to a generalized power series
      atanFlag : String := "real: right side"; posCheck? : Boolean := true
      (result := exprToGenUPS(arg,posCheck?,atanFlag)$FS2UPS) case %problem =>
        trouble := result.%problem
        trouble.prob = "essential singularity" => [monomial(fe,0)$UPXS :: XXP]
        [result.%problem]
      ups := result.%series; coef := coefficient(ups,0)
      -- series involves complex numbers
      (ord := order(ups,0)) = 0 and coef * coef = -1 =>
        y := differentiate(ups)/(1 + ups*ups)
        yCoef := coefficient(y,-1)
        [(monomial(log yCoef,0)+integrate(y - monomial(yCoef,-1)$UPXS)) :: XXP]
      cc : FE :=
        ord < 0 =>
          (rn := ratIfCan(ord :: FE)) case "failed" =>
            -- this condition usually won't occur because exponents will
            -- be integers or rational numbers
            return stateProblem("atan","branch problem")
          lc := coefficient(ups,ord)
          (signum := sign(lc)$SIGNEF) case "failed" =>
            -- can't determine sign
            posNegPi2 := signOfExpression(lc) * pi()/(2 :: FE)
            plusMinus = 1 => posNegPi2
            pi()/(2 :: FE) - posNegPi2
          (n := signum :: Integer) = -1 =>
            plusMinus = 1 => -pi()/(2 :: FE)
            pi()
          plusMinus = 1 => pi()/(2 :: FE)
          0
        atan coef
      [((cc :: UPXS) + integrate(differentiate(ups)/(1 + ups*ups))) :: XXP]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package FS2EXPXP FunctionSpaceToExponentialExpansion>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}