\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra fs2expxp.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package FS2EXPXP FunctionSpaceToExponentialExpansion} <<package FS2EXPXP FunctionSpaceToExponentialExpansion>>= )abbrev package FS2EXPXP FunctionSpaceToExponentialExpansion ++ Author: Clifton J. Williamson ++ Date Created: 17 August 1992 ++ Date Last Updated: 2 December 1994 ++ Basic Operations: ++ Related Domains: ExponentialExpansion, UnivariatePuiseuxSeries(FE,x,cen) ++ Also See: FunctionSpaceToUnivariatePowerSeries ++ AMS Classifications: ++ Keywords: elementary function, power series ++ Examples: ++ References: ++ Description: ++ This package converts expressions in some function space to exponential ++ expansions. FunctionSpaceToExponentialExpansion(R,FE,x,cen):_ Exports == Implementation where R : Join(GcdDomain,RetractableTo Integer,_ LinearlyExplicitRingOver Integer) FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_ FunctionSpace R) x : Symbol cen : FE B ==> Boolean BOP ==> BasicOperator Expon ==> Fraction Integer I ==> Integer NNI ==> NonNegativeInteger K ==> Kernel FE L ==> List RN ==> Fraction Integer S ==> String SY ==> Symbol PCL ==> PolynomialCategoryLifting(IndexedExponents K,K,R,SMP,FE) POL ==> Polynomial R SMP ==> SparseMultivariatePolynomial(R,K) SUP ==> SparseUnivariatePolynomial Polynomial R UTS ==> UnivariateTaylorSeries(FE,x,cen) ULS ==> UnivariateLaurentSeries(FE,x,cen) UPXS ==> UnivariatePuiseuxSeries(FE,x,cen) EFULS ==> ElementaryFunctionsUnivariateLaurentSeries(FE,UTS,ULS) EFUPXS ==> ElementaryFunctionsUnivariatePuiseuxSeries(FE,ULS,UPXS,EFULS) FS2UPS ==> FunctionSpaceToUnivariatePowerSeries(R,FE,RN,UPXS,EFUPXS,x) EXPUPXS ==> ExponentialOfUnivariatePuiseuxSeries(FE,x,cen) UPXSSING ==> UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,x,cen) XXP ==> ExponentialExpansion(R,FE,x,cen) Problem ==> Record(func:String,prob:String) Result ==> Union(%series:UPXS,%problem:Problem) XResult ==> Union(%expansion:XXP,%problem:Problem) SIGNEF ==> ElementaryFunctionSign(R,FE) Exports ==> with exprToXXP : (FE,B) -> XResult ++ exprToXXP(fcn,posCheck?) converts the expression \spad{fcn} to ++ an exponential expansion. If \spad{posCheck?} is true, ++ log's of negative numbers are not allowed nor are nth roots of ++ negative numbers with n even. If \spad{posCheck?} is false, ++ these are allowed. localAbs: FE -> FE ++ localAbs(fcn) = \spad{abs(fcn)} or \spad{sqrt(fcn**2)} depending ++ on whether or not FE has a function \spad{abs}. This should be ++ a local function, but the compiler won't allow it. Implementation ==> add import FS2UPS -- conversion of functional expressions to Puiseux series import EFUPXS -- partial transcendental funtions on UPXS ratIfCan : FE -> Union(RN,"failed") stateSeriesProblem : (S,S) -> Result stateProblem : (S,S) -> XResult newElem : FE -> FE smpElem : SMP -> FE k2Elem : K -> FE iExprToXXP : (FE,B) -> XResult listToXXP : (L FE,B,XXP,(XXP,XXP) -> XXP) -> XResult isNonTrivPower : FE -> Union(Record(val:FE,exponent:I),"failed") negativePowerOK? : UPXS -> Boolean powerToXXP : (FE,I,B) -> XResult carefulNthRootIfCan : (UPXS,NNI,B) -> Result nthRootXXPIfCan : (XXP,NNI,B) -> XResult nthRootToXXP : (FE,NNI,B) -> XResult genPowerToXXP : (L FE,B) -> XResult kernelToXXP : (K,B) -> XResult genExp : (UPXS,B) -> Result exponential : (UPXS,B) -> XResult expToXXP : (FE,B) -> XResult genLog : (UPXS,B) -> Result logToXXP : (FE,B) -> XResult applyIfCan : (UPXS -> Union(UPXS,"failed"),FE,S,B) -> XResult applyBddIfCan : (FE,UPXS -> Union(UPXS,"failed"),FE,S,B) -> XResult tranToXXP : (K,FE,B) -> XResult contOnReals? : S -> B bddOnReals? : S -> B opsInvolvingX : FE -> L BOP opInOpList? : (SY,L BOP) -> B exponential? : FE -> B productOfNonZeroes? : FE -> B atancotToXXP : (FE,FE,B,I) -> XResult ZEROCOUNT : RN := 1000/1 -- number of zeroes to be removed when taking logs or nth roots --% retractions ratIfCan fcn == retractIfCan(fcn)@Union(RN,"failed") --% 'problems' with conversion stateSeriesProblem(function,problem) == -- records the problem which occured in converting an expression -- to a power series [[function,problem]] stateProblem(function,problem) == -- records the problem which occured in converting an expression -- to an exponential expansion [[function,problem]] --% normalizations newElem f == -- rewrites a functional expression; all trig functions are -- expressed in terms of sin and cos; all hyperbolic trig -- functions are expressed in terms of exp; all inverse -- hyperbolic trig functions are expressed in terms of exp -- and log smpElem(numer f) / smpElem(denom f) smpElem p == map(k2Elem,#1::FE,p)$PCL k2Elem k == -- rewrites a kernel; all trig functions are -- expressed in terms of sin and cos; all hyperbolic trig -- functions are expressed in terms of exp null(args := [newElem a for a in argument k]) => k :: FE iez := inv(ez := exp(z := first args)) sinz := sin z; cosz := cos z is?(k,"tan" :: SY) => sinz / cosz is?(k,"cot" :: SY) => cosz / sinz is?(k,"sec" :: SY) => inv cosz is?(k,"csc" :: SY) => inv sinz is?(k,"sinh" :: SY) => (ez - iez) / (2 :: FE) is?(k,"cosh" :: SY) => (ez + iez) / (2 :: FE) is?(k,"tanh" :: SY) => (ez - iez) / (ez + iez) is?(k,"coth" :: SY) => (ez + iez) / (ez - iez) is?(k,"sech" :: SY) => 2 * inv(ez + iez) is?(k,"csch" :: SY) => 2 * inv(ez - iez) is?(k,"acosh" :: SY) => log(sqrt(z**2 - 1) + z) is?(k,"atanh" :: SY) => log((z + 1) / (1 - z)) / (2 :: FE) is?(k,"acoth" :: SY) => log((z + 1) / (z - 1)) / (2 :: FE) is?(k,"asech" :: SY) => log((inv z) + sqrt(inv(z**2) - 1)) is?(k,"acsch" :: SY) => log((inv z) + sqrt(1 + inv(z**2))) (operator k) args --% general conversion function exprToXXP(fcn,posCheck?) == iExprToXXP(newElem fcn,posCheck?) iExprToXXP(fcn,posCheck?) == -- converts a functional expression to an exponential expansion --!! The following line is commented out so that expressions of --!! the form a**b will be normalized to exp(b * log(a)) even if --!! 'a' and 'b' do not involve the limiting variable 'x'. --!! - cjw 1 Dec 94 --not member?(x,variables fcn) => [monomial(fcn,0)$UPXS :: XXP] (poly := retractIfCan(fcn)@Union(POL,"failed")) case POL => [exprToUPS(fcn,false,"real:two sides").%series :: XXP] (sum := isPlus fcn) case L(FE) => listToXXP(sum :: L(FE),posCheck?,0,#1 + #2) (prod := isTimes fcn) case L(FE) => listToXXP(prod :: L(FE),posCheck?,1,#1 * #2) (expt := isNonTrivPower fcn) case Record(val:FE,exponent:I) => power := expt :: Record(val:FE,exponent:I) powerToXXP(power.val,power.exponent,posCheck?) (ker := retractIfCan(fcn)@Union(K,"failed")) case K => kernelToXXP(ker :: K,posCheck?) error "exprToXXP: neither a sum, product, power, nor kernel" --% sums and products listToXXP(list,posCheck?,ans,op) == -- converts each element of a list of expressions to an exponential -- expansion and returns the sum of these expansions, when 'op' is + -- and 'ans' is 0, or the product of these expansions, when 'op' is * -- and 'ans' is 1 while not null list repeat (term := iExprToXXP(first list,posCheck?)) case %problem => return term ans := op(ans,term.%expansion) list := rest list [ans] --% nth roots and integral powers isNonTrivPower fcn == -- is the function a power with exponent other than 0 or 1? (expt := isPower fcn) case "failed" => "failed" power := expt :: Record(val:FE,exponent:I) one? power.exponent => "failed" power negativePowerOK? upxs == -- checks the lower order coefficient of a Puiseux series; -- the coefficient may be inverted only if -- (a) the only function involving x is 'log', or -- (b) the lowest order coefficient is a product of exponentials -- and functions not involving x deg := degree upxs if (coef := coefficient(upxs,deg)) = 0 then deg := order(upxs,deg + ZEROCOUNT :: Expon) (coef := coefficient(upxs,deg)) = 0 => error "inverse of series with many leading zero coefficients" xOpList := opsInvolvingX coef -- only function involving x is 'log' (null xOpList) => true (null rest xOpList and is?(first xOpList,"log" :: SY)) => true -- lowest order coefficient is a product of exponentials and -- functions not involving x productOfNonZeroes? coef => true false powerToXXP(fcn,n,posCheck?) == -- converts an integral power to an exponential expansion (b := iExprToXXP(fcn,posCheck?)) case %problem => b xxp := b.%expansion positive? n => [xxp ** n] -- a Puiseux series will be reciprocated only if n < 0 and -- numerator of 'xxp' has exactly one monomial numberOfMonomials(num := numer xxp) > 1 => [xxp ** n] negativePowerOK? leadingCoefficient num => (rec := recip num) case "failed" => error "FS2EXPXP: can't happen" nn := (-n) :: NNI [(((denom xxp) ** nn) * ((rec :: UPXSSING) ** nn)) :: XXP] --!! we may want to create a fraction instead of trying to --!! reciprocate the numerator stateProblem("inv","lowest order coefficient involves x") carefulNthRootIfCan(ups,n,posCheck?) == -- similar to 'nthRootIfCan', but it is fussy about the series -- it takes as an argument. If 'n' is EVEN and 'posCheck?' -- is truem then the leading coefficient of the series must -- be POSITIVE. In this case, if 'rightOnly?' is false, the -- order of the series must be zero. The idea is that the -- series represents a real function of a real variable, and -- we want a unique real nth root defined on a neighborhood -- of zero. n < 1 => error "nthRoot: n must be positive" deg := degree ups if (coef := coefficient(ups,deg)) = 0 then deg := order(ups,deg + ZEROCOUNT :: Expon) (coef := coefficient(ups,deg)) = 0 => error "log of series with many leading zero coefficients" -- if 'posCheck?' is true, we do not allow nth roots of negative -- numbers when n in even if even?(n :: I) then if posCheck? and ((signum := sign(coef)$SIGNEF) case I) then (signum :: I) = -1 => return stateSeriesProblem("nth root","root of negative number") (ans := nthRootIfCan(ups,n)) case "failed" => stateSeriesProblem("nth root","no nth root") [ans :: UPXS] nthRootXXPIfCan(xxp,n,posCheck?) == num := numer xxp; den := denom xxp not zero?(reductum num) or not zero?(reductum den) => stateProblem("nth root","several monomials in numerator or denominator") nInv : RN := 1/n newNum := coef : UPXS := root := carefulNthRootIfCan(leadingCoefficient num,n,posCheck?) root case %problem => return [root.%problem] root.%series deg := (nInv :: FE) * (degree num) monomial(coef,deg) newDen := coef : UPXS := root := carefulNthRootIfCan(leadingCoefficient den,n,posCheck?) root case %problem => return [root.%problem] root.%series deg := (nInv :: FE) * (degree den) monomial(coef,deg) [newNum/newDen] nthRootToXXP(arg,n,posCheck?) == -- converts an nth root to a power series -- this is not used in the limit package, so the series may -- have non-zero order, in which case nth roots may not be unique (result := iExprToXXP(arg,posCheck?)) case %problem => [result.%problem] ans := nthRootXXPIfCan(result.%expansion,n,posCheck?) ans case %problem => [ans.%problem] [ans.%expansion] --% general powers f(x) ** g(x) genPowerToXXP(args,posCheck?) == -- converts a power f(x) ** g(x) to an exponential expansion (logBase := logToXXP(first args,posCheck?)) case %problem => logBase (expon := iExprToXXP(second args,posCheck?)) case %problem => expon xxp := (expon.%expansion) * (logBase.%expansion) (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" => stateProblem("exp","multiply nested exponential") exponential(f,posCheck?) --% kernels kernelToXXP(ker,posCheck?) == -- converts a kernel to a power series (sym := symbolIfCan(ker)) case Symbol => (sym :: Symbol) = x => [monomial(1,1)$UPXS :: XXP] [monomial(ker :: FE,0)$UPXS :: XXP] empty?(args := argument ker) => [monomial(ker :: FE,0)$UPXS :: XXP] empty? rest args => arg := first args is?(ker,"%paren" :: Symbol) => iExprToXXP(arg,posCheck?) is?(ker,"log" :: Symbol) => logToXXP(arg,posCheck?) is?(ker,"exp" :: Symbol) => expToXXP(arg,posCheck?) tranToXXP(ker,arg,posCheck?) is?(ker,"%power" :: Symbol) => genPowerToXXP(args,posCheck?) is?(ker,"nthRoot" :: Symbol) => n := retract(second args)@I nthRootToXXP(first args,n :: NNI,posCheck?) stateProblem(string name operator ker,"unknown kernel") --% exponentials and logarithms genExp(ups,posCheck?) == -- If the series has order zero and the constant term a0 of the -- series involves x, the function tries to expand exp(a0) as -- a power series. negative?(deg := order(ups,1)) => -- this "can't happen" error "exp of function with sigularity" positive? deg => [exp(ups)] lc := coefficient(ups,0); varOpList := opsInvolvingX lc not opInOpList?("log" :: Symbol,varOpList) => [exp(ups)] -- try to fix exp(lc) if necessary expCoef := normalize(exp lc,x)$ElementaryFunctionStructurePackage(R,FE) result := exprToGenUPS(expCoef,posCheck?,"real:right side")$FS2UPS --!! will deal with problems in limitPlus in EXPEXPAN --result case %problem => result result case %problem => [exp(ups)] [(result.%series) * exp(ups - monomial(lc,0))] exponential(f,posCheck?) == singPart := truncate(f,0) - (coefficient(f,0) :: UPXS) taylorPart := f - singPart expon := exponential(singPart)$EXPUPXS (coef := genExp(taylorPart,posCheck?)) case %problem => [coef.%problem] [monomial(coef.%series,expon)$UPXSSING :: XXP] expToXXP(arg,posCheck?) == (result := iExprToXXP(arg,posCheck?)) case %problem => result xxp := result.%expansion (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" => stateProblem("exp","multiply nested exponential") exponential(f,posCheck?) genLog(ups,posCheck?) == deg := degree ups if (coef := coefficient(ups,deg)) = 0 then deg := order(ups,deg + ZEROCOUNT) (coef := coefficient(ups,deg)) = 0 => error "log of series with many leading zero coefficients" -- if 'posCheck?' is true, we do not allow logs of negative numbers if posCheck? then if ((signum := sign(coef)$SIGNEF) case I) then (signum :: I) = -1 => return stateSeriesProblem("log","negative leading coefficient") lt := monomial(coef,deg)$UPXS -- check to see if lowest order coefficient is a negative rational negRat? : Boolean := ((rat := ratIfCan coef) case RN) => negative?(rat :: RN) => true false false logTerm : FE := mon : FE := (x :: FE) - (cen :: FE) pow : FE := mon ** (deg :: FE) negRat? => log(coef * pow) term1 : FE := (deg :: FE) * log(mon) log(coef) + term1 [monomial(logTerm,0)$UPXS + log(ups/lt)] logToXXP(arg,posCheck?) == (result := iExprToXXP(arg,posCheck?)) case %problem => result xxp := result.%expansion num := numer xxp; den := denom xxp not zero?(reductum num) or not zero?(reductum den) => stateProblem("log","several monomials in numerator or denominator") numCoefLog : UPXS := (res := genLog(leadingCoefficient num,posCheck?)) case %problem => return [res.%problem] res.%series denCoefLog : UPXS := (res := genLog(leadingCoefficient den,posCheck?)) case %problem => return [res.%problem] res.%series numLog := (exponent degree num) + numCoefLog denLog := (exponent degree den) + denCoefLog --?? num? [(numLog - denLog) :: XXP] --% other transcendental functions applyIfCan(fcn,arg,fcnName,posCheck?) == -- converts fcn(arg) to an exponential expansion (xxpArg := iExprToXXP(arg,posCheck?)) case %problem => xxpArg xxp := xxpArg.%expansion (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" => stateProblem(fcnName,"multiply nested exponential") upxs := f :: UPXS negative? (deg := order(upxs,1)) => stateProblem(fcnName,"essential singularity") positive? deg => [fcn(upxs) :: UPXS :: XXP] lc := coefficient(upxs,0); xOpList := opsInvolvingX lc null xOpList => [fcn(upxs) :: UPXS :: XXP] opInOpList?("log" :: SY,xOpList) => stateProblem(fcnName,"logs in constant coefficient") contOnReals? fcnName => [fcn(upxs) :: UPXS :: XXP] stateProblem(fcnName,"x in constant coefficient") applyBddIfCan(fe,fcn,arg,fcnName,posCheck?) == -- converts fcn(arg) to a generalized power series, where the -- function fcn is bounded for real values -- if fcn(arg) has an essential singularity as a complex -- function, we return fcn(arg) as a monomial of degree 0 (xxpArg := iExprToXXP(arg,posCheck?)) case %problem => trouble := xxpArg.%problem trouble.prob = "essential singularity" => [monomial(fe,0)$UPXS :: XXP] xxpArg xxp := xxpArg.%expansion (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" => stateProblem("exp","multiply nested exponential") (ans := fcn(f :: UPXS)) case "failed" => [monomial(fe,0)$UPXS :: XXP] [ans :: UPXS :: XXP] CONTFCNS : L S := ["sin","cos","atan","acot","exp","asinh"] -- functions which are defined and continuous at all real numbers BDDFCNS : L S := ["sin","cos","atan","acot"] -- functions which are bounded on the reals contOnReals? fcn == member?(fcn,CONTFCNS) bddOnReals? fcn == member?(fcn,BDDFCNS) opsInvolvingX fcn == opList := [op for k in tower fcn | unary?(op := operator k) _ and member?(x,variables first argument k)] removeDuplicates opList opInOpList?(name,opList) == for op in opList repeat is?(op,name) => return true false exponential? fcn == -- is 'fcn' of the form exp(f)? (ker := retractIfCan(fcn)@Union(K,"failed")) case K => is?(ker :: K,"exp" :: Symbol) false productOfNonZeroes? fcn == -- is 'fcn' a product of non-zero terms, where 'non-zero' -- means an exponential or a function not involving x exponential? fcn => true (prod := isTimes fcn) case "failed" => false for term in (prod :: L(FE)) repeat (not exponential? term) and member?(x,variables term) => return false true tranToXXP(ker,arg,posCheck?) == -- converts op(arg) to a power series for certain functions -- op in trig or hyperbolic trig categories -- N.B. when this function is called, 'k2elem' will have been -- applied, so the following functions cannot appear: -- tan, cot, sec, csc, sinh, cosh, tanh, coth, sech, csch -- acosh, atanh, acoth, asech, acsch is?(ker,"sin" :: SY) => applyBddIfCan(ker :: FE,sinIfCan,arg,"sin",posCheck?) is?(ker,"cos" :: SY) => applyBddIfCan(ker :: FE,cosIfCan,arg,"cos",posCheck?) is?(ker,"asin" :: SY) => applyIfCan(asinIfCan,arg,"asin",posCheck?) is?(ker,"acos" :: SY) => applyIfCan(acosIfCan,arg,"acos",posCheck?) is?(ker,"atan" :: SY) => atancotToXXP(ker :: FE,arg,posCheck?,1) is?(ker,"acot" :: SY) => atancotToXXP(ker :: FE,arg,posCheck?,-1) is?(ker,"asec" :: SY) => applyIfCan(asecIfCan,arg,"asec",posCheck?) is?(ker,"acsc" :: SY) => applyIfCan(acscIfCan,arg,"acsc",posCheck?) is?(ker,"asinh" :: SY) => applyIfCan(asinhIfCan,arg,"asinh",posCheck?) stateProblem(string name operator ker,"unknown kernel") if FE has abs: FE -> FE then localAbs fcn == abs fcn else localAbs fcn == sqrt(fcn * fcn) signOfExpression: FE -> FE signOfExpression arg == localAbs(arg)/arg atancotToXXP(fe,arg,posCheck?,plusMinus) == -- converts atan(f(x)) to a generalized power series atanFlag : String := "real: right side"; posCheck? : Boolean := true (result := exprToGenUPS(arg,posCheck?,atanFlag)$FS2UPS) case %problem => trouble := result.%problem trouble.prob = "essential singularity" => [monomial(fe,0)$UPXS :: XXP] [result.%problem] ups := result.%series; coef := coefficient(ups,0) -- series involves complex numbers (ord := order(ups,0)) = 0 and coef * coef = -1 => y := differentiate(ups)/(1 + ups*ups) yCoef := coefficient(y,-1) [(monomial(log yCoef,0)+integrate(y - monomial(yCoef,-1)$UPXS)) :: XXP] cc : FE := negative? ord => (rn := ratIfCan(ord :: FE)) case "failed" => -- this condition usually won't occur because exponents will -- be integers or rational numbers return stateProblem("atan","branch problem") lc := coefficient(ups,ord) (signum := sign(lc)$SIGNEF) case "failed" => -- can't determine sign posNegPi2 := signOfExpression(lc) * pi()/(2 :: FE) plusMinus = 1 => posNegPi2 pi()/(2 :: FE) - posNegPi2 (n := signum :: Integer) = -1 => plusMinus = 1 => -pi()/(2 :: FE) pi() plusMinus = 1 => pi()/(2 :: FE) 0 atan coef [((cc :: UPXS) + integrate(differentiate(ups)/(1 + ups*ups))) :: XXP] @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package FS2EXPXP FunctionSpaceToExponentialExpansion>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}