\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra fraction.spad} \author{Dave Barton, Barry Trager, James Davenport} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain LO Localize} <<domain LO Localize>>= )abbrev domain LO Localize ++ Author: Dave Barton, Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: + - / numer denom ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: localization ++ References: ++ Description: Localize(M,R,S) produces fractions with numerators ++ from an R module M and denominators from some multiplicative subset ++ D of R. Localize(M:Module R, R:CommutativeRing, S:SubsetCategory(Monoid, R)): Module R with if M has OrderedAbelianGroup then OrderedAbelianGroup / :(%,S) -> % ++ x / d divides the element x by d. / :(M,S) -> % ++ m / d divides the element m by d. numer: % -> M ++ numer x returns the numerator of x. denom: % -> S ++ denom x returns the denominator of x. == add --representation Rep:= Record(num:M,den:S) --declarations x,y: % n: Integer m: M r: R d: S --definitions 0 == [0,1] zero? x == zero? (x.num) -x== [-x.num,x.den] x=y == y.den*x.num = x.den*y.num before?(x,y) == before?(y.den*x.num, x.den*y.num) numer x == x.num denom x == x.den if M has OrderedAbelianGroup then x < y == -- if y.den::R < 0 then (x,y):=(y,x) -- if x.den::R < 0 then (x,y):=(y,x) y.den*x.num < x.den*y.num x+y == [y.den*x.num+x.den*y.num, x.den*y.den] n*x == [n*x.num,x.den] r*x == if r=x.den then [x.num,1] else [r*x.num,x.den] x/d == zero?(u:S:=d*x.den) => error "division by zero" [x.num,u] m/d == if zero? d then error "division by zero" else [m,d] coerce(x:%):OutputForm == one?(xd:=x.den) => (x.num)::OutputForm (x.num)::OutputForm / (xd::OutputForm) latex(x:%): String == one?(xd:=x.den) => latex(x.num) nl : String := concat("{", concat(latex(x.num), "}")$String)$String dl : String := concat("{", concat(latex(x.den), "}")$String)$String concat("{ ", concat(nl, concat(" \over ", concat(dl, " }")$String)$String)$String)$String @ \section{domain LA LocalAlgebra} <<domain LA LocalAlgebra>>= )abbrev domain LA LocalAlgebra ++ Author: Dave Barton, Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: LocalAlgebra produces the localization of an algebra, i.e. ++ fractions whose numerators come from some R algebra. LocalAlgebra(A: Algebra R, R: CommutativeRing, S: SubsetCategory(Monoid, R)): Algebra R with if A has OrderedRing then OrderedRing / : (%,S) -> % ++ x / d divides the element x by d. / : (A,S) -> % ++ a / d divides the element \spad{a} by d. numer: % -> A ++ numer x returns the numerator of x. denom: % -> S ++ denom x returns the denominator of x. == Localize(A, R, S) add 1 == 1$A / 1$S x:% * y:% == (numer(x) * numer(y)) / (denom(x) * denom(y)) characteristic == characteristic$A @ \section{category QFCAT QuotientFieldCategory} <<category QFCAT QuotientFieldCategory>>= )abbrev category QFCAT QuotientFieldCategory ++ Author: ++ Date Created: ++ Date Last Updated: 5th March 1996 ++ Basic Functions: + - * / numer denom ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: QuotientField(S) is the ++ category of fractions of an Integral Domain S. QuotientFieldCategory(S: IntegralDomain): Category == Join(Field, Algebra S, RetractableTo S, FullyEvalableOver S, DifferentialExtension S, FullyLinearlyExplicitRingOver S, Patternable S, FullyPatternMatchable S) with / : (S, S) -> % ++ d1 / d2 returns the fraction d1 divided by d2. numer : % -> S ++ numer(x) returns the numerator of the fraction x. denom : % -> S ++ denom(x) returns the denominator of the fraction x. numerator : % -> % ++ numerator(x) is the numerator of the fraction x converted to %. denominator : % -> % ++ denominator(x) is the denominator of the fraction x converted to %. if S has StepThrough then StepThrough if S has RetractableTo Integer then RetractableTo Integer RetractableTo Fraction Integer if S has OrderedSet then OrderedSet if S has OrderedIntegralDomain then OrderedIntegralDomain if S has RealConstant then RealConstant if S has ConvertibleTo InputForm then ConvertibleTo InputForm if S has CharacteristicZero then CharacteristicZero if S has CharacteristicNonZero then CharacteristicNonZero if S has RetractableTo Symbol then RetractableTo Symbol if S has EuclideanDomain then wholePart: % -> S ++ wholePart(x) returns the whole part of the fraction x ++ i.e. the truncated quotient of the numerator by the denominator. fractionPart: % -> % ++ fractionPart(x) returns the fractional part of x. ++ x = wholePart(x) + fractionPart(x) if S has IntegerNumberSystem then random: () -> % ++ random() returns a random fraction. ceiling : % -> S ++ ceiling(x) returns the smallest integral element above x. floor: % -> S ++ floor(x) returns the largest integral element below x. if S has PolynomialFactorizationExplicit then PolynomialFactorizationExplicit add import MatrixCommonDenominator(S, %) numerator(x) == numer(x)::% denominator(x) == denom(x) ::% if S has StepThrough then init() == init()$S / 1$S nextItem(n) == m:= nextItem numer n m case nothing => error "We seem to have a Fraction of a finite object" just(m / 1) map(fn, x) == (fn numer x) / (fn denom x) reducedSystem(m:Matrix %):Matrix S == clearDenominator m characteristic == characteristic$S differentiate(x:%, deriv:S -> S) == n := numer x d := denom x (deriv n * d - n * deriv d) / (d**2) if S has ConvertibleTo InputForm then convert(x:%):InputForm == (convert numer x) / (convert denom x) if S has RealConstant then convert(x:%):Float == (convert numer x) / (convert denom x) convert(x:%):DoubleFloat == (convert numer x) / (convert denom x) -- Note that being a Join(OrderedSet,IntegralDomain) is not the same -- as being an OrderedIntegralDomain. if S has OrderedIntegralDomain then if S has canonicalUnitNormal then x:% < y:% == (numer x * denom y) < (numer y * denom x) else x:% < y:% == if negative? denom(x) then (x,y):=(y,x) if negative? denom(y) then (x,y):=(y,x) (numer x * denom y) < (numer y * denom x) else if S has OrderedSet then x:% < y:% == (numer x * denom y) < (numer y * denom x) if (S has EuclideanDomain) then fractionPart x == x - (wholePart(x)::%) if S has RetractableTo Symbol then coerce(s:Symbol):% == s::S::% retract(x:%):Symbol == retract(retract(x)@S) retractIfCan(x:%):Union(Symbol, "failed") == (r := retractIfCan(x)@Union(S,"failed")) case "failed" =>"failed" retractIfCan(r::S) if (S has ConvertibleTo Pattern Integer) then convert(x:%):Pattern(Integer)==(convert numer x)/(convert denom x) if (S has PatternMatchable Integer) then patternMatch(x:%, p:Pattern Integer, l:PatternMatchResult(Integer, %)) == patternMatch(x, p, l)$PatternMatchQuotientFieldCategory(Integer, S, %) if (S has ConvertibleTo Pattern Float) then convert(x:%):Pattern(Float) == (convert numer x)/(convert denom x) if (S has PatternMatchable Float) then patternMatch(x:%, p:Pattern Float, l:PatternMatchResult(Float, %)) == patternMatch(x, p, l)$PatternMatchQuotientFieldCategory(Float, S, %) if S has RetractableTo Integer then coerce(x:Fraction Integer):% == numer(x)::% / denom(x)::% if not(S is Integer) then retract(x:%):Integer == retract(retract(x)@S) retractIfCan(x:%):Union(Integer, "failed") == (u := retractIfCan(x)@Union(S, "failed")) case "failed" => "failed" retractIfCan(u::S) if S has IntegerNumberSystem then random():% == d : S while zero?(d:=random()$S) repeat d random()$S / d reducedSystem(m:Matrix %, v:Vector %): Record(mat:Matrix S, vec:Vector S) == n := reducedSystem(horizConcat(v::Matrix(%), m))@Matrix(S) [subMatrix(n, minRowIndex n, maxRowIndex n, 1 + minColIndex n, maxColIndex n), column(n, minColIndex n)] @ \section{package QFCAT2 QuotientFieldCategoryFunctions2} <<package QFCAT2 QuotientFieldCategoryFunctions2>>= )abbrev package QFCAT2 QuotientFieldCategoryFunctions2 ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package extends a function between integral domains ++ to a mapping between their quotient fields. QuotientFieldCategoryFunctions2(A, B, R, S): Exports == Impl where A, B: IntegralDomain R : QuotientFieldCategory(A) S : QuotientFieldCategory(B) Exports ==> with map: (A -> B, R) -> S ++ map(func,frac) applies the function func to the numerator ++ and denominator of frac. Impl ==> add map(f, r) == f(numer r) / f(denom r) @ \section{domain FRAC Fraction} <<domain FRAC Fraction>>= )abbrev domain FRAC Fraction ++ Author: ++ Date Created: ++ Date Last Updated: 12 February 1992 ++ Basic Functions: Field, numer, denom ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: fraction, localization ++ References: ++ Description: Fraction takes an IntegralDomain S and produces ++ the domain of Fractions with numerators and denominators from S. ++ If S is also a GcdDomain, then gcd's between numerator and ++ denominator will be cancelled during all operations. Fraction(S: IntegralDomain): QuotientFieldCategory S with if S has canonical and S has GcdDomain and S has canonicalUnitNormal then canonical ++ \spad{canonical} means that equal elements are in fact identical. == LocalAlgebra(S, S, S) add Rep:= Record(num:S, den:S) coerce(d:S):% == [d,1] zero?(x:%) == zero? x.num if S has GcdDomain and S has canonicalUnitNormal then retract(x:%):S == one?(x.den) => x.num error "Denominator not equal to 1" retractIfCan(x:%):Union(S, "failed") == one?(x.den) => x.num "failed" else retract(x:%):S == (a:= x.num exquo x.den) case "failed" => error "Denominator not equal to 1" a retractIfCan(x:%):Union(S,"failed") == x.num exquo x.den if S has EuclideanDomain then wholePart x == one?(x.den) => x.num x.num quo x.den if S has IntegerNumberSystem then floor x == one?(x.den) => x.num negative? x => -ceiling(-x) wholePart x ceiling x == one?(x.den) => x.num negative? x => -floor(-x) 1 + wholePart x if S has GcdDomain then cancelGcd: % -> S normalize: % -> % normalize x == zero?(x.num) => 0 one?(x.den) => x uca := unitNormal(x.den) zero?(x.den := uca.canonical) => error "division by zero" x.num := x.num * uca.associate x recip x == zero?(x.num) => "failed" normalize [x.den, x.num] cancelGcd x == one?(x.den) => x.den d := gcd(x.num, x.den) xn := x.num exquo d xn case "failed" => error "gcd not gcd in QF cancelGcd (numerator)" xd := x.den exquo d xd case "failed" => error "gcd not gcd in QF cancelGcd (denominator)" x.num := xn :: S x.den := xd :: S d nn:S / dd:S == zero? dd => error "division by zero" cancelGcd(z := [nn, dd]) normalize z x + y == zero? y => x zero? x => y z := [x.den,y.den] d := cancelGcd z g := [z.den * x.num + z.num * y.num, d] cancelGcd g g.den := g.den * z.num * z.den normalize g -- We can not rely on the defaulting mechanism -- to supply a definition for -, even though this -- definition would do, for thefollowing reasons: -- 1) The user could have defined a subtraction -- in Localize, which would not work for -- QuotientField; -- 2) even if he doesn't, the system currently -- places a default definition in Localize, -- which uses Localize's +, which does not -- cancel gcds x - y == zero? y => x z := [x.den, y.den] d := cancelGcd z g := [z.den * x.num - z.num * y.num, d] cancelGcd g g.den := g.den * z.num * z.den normalize g x:% * y:% == zero? x or zero? y => 0 one? x => y one? y => x (x, y) := ([x.num, y.den], [y.num, x.den]) cancelGcd x; cancelGcd y; normalize [x.num * y.num, x.den * y.den] n:Integer * x:% == y := [n::S, x.den] cancelGcd y normalize [x.num * y.num, y.den] nn:S * x:% == y := [nn, x.den] cancelGcd y normalize [x.num * y.num, y.den] differentiate(x:%, deriv:S -> S) == y := [deriv(x.den), x.den] d := cancelGcd(y) y.num := deriv(x.num) * y.den - x.num * y.num (d, y.den) := (y.den, d) cancelGcd y y.den := y.den * d * d normalize y if S has canonicalUnitNormal then x = y == (x.num = y.num) and (x.den = y.den) --x / dd == (cancelGcd (z:=[x.num,dd*x.den]); normalize z) one? x == one? (x.num) and one? (x.den) -- again assuming canonical nature of representation else nn:S/dd:S == if zero? dd then error "division by zero" else [nn,dd] recip x == zero?(x.num) => "failed" [x.den, x.num] if (S has RetractableTo Fraction Integer) then retract(x:%):Fraction(Integer) == retract(retract(x)@S) retractIfCan(x:%):Union(Fraction Integer, "failed") == (u := retractIfCan(x)@Union(S, "failed")) case "failed" => "failed" retractIfCan(u::S) else if (S has RetractableTo Integer) then retract(x:%):Fraction(Integer) == retract(numer x) / retract(denom x) retractIfCan(x:%):Union(Fraction Integer, "failed") == (n := retractIfCan numer x) case "failed" => "failed" (d := retractIfCan denom x) case "failed" => "failed" (n::Integer) / (d::Integer) QFP ==> SparseUnivariatePolynomial % DP ==> SparseUnivariatePolynomial S import UnivariatePolynomialCategoryFunctions2(%,QFP,S,DP) import UnivariatePolynomialCategoryFunctions2(S,DP,%,QFP) if S has GcdDomain then gcdPolynomial(pp,qq) == zero? pp => qq zero? qq => pp zero? degree pp or zero? degree qq => 1 denpp:="lcm"/[denom u for u in coefficients pp] ppD:DP:=map(retract(#1*denpp),pp) denqq:="lcm"/[denom u for u in coefficients qq] qqD:DP:=map(retract(#1*denqq),qq) g:=gcdPolynomial(ppD,qqD) zero? degree g => 1 one? (lc:=leadingCoefficient g) => map(#1::%,g) map(#1 / lc,g) if (S has PolynomialFactorizationExplicit) then -- we'll let the solveLinearPolynomialEquations operator -- default from Field pp,qq: QFP lpp: List QFP import Factored SparseUnivariatePolynomial % if S has CharacteristicNonZero then if S has canonicalUnitNormal and S has GcdDomain then charthRoot x == n:= charthRoot x.num n case nothing => nothing d:=charthRoot x.den d case nothing => nothing just(n/d) else charthRoot x == -- to find x = p-th root of n/d -- observe that xd is p-th root of n*d**(p-1) ans:=charthRoot(x.num * (x.den)**(characteristic$%-1)::NonNegativeInteger) ans case nothing => nothing just(ans / x.den) clear: List % -> List S clear l == d:="lcm"/[x.den for x in l] [ x.num * (d exquo x.den)::S for x in l] mat: Matrix % conditionP mat == matD: Matrix S matD:= matrix [ clear l for l in listOfLists mat ] ansD := conditionP matD ansD case "failed" => "failed" ansDD:=ansD :: Vector(S) [ ansDD(i)::% for i in 1..#ansDD]$Vector(%) factorPolynomial(pp) == zero? pp => 0 denpp:="lcm"/[denom u for u in coefficients pp] ppD:DP:=map(retract(#1*denpp),pp) ff:=factorPolynomial ppD den1:%:=denpp::% lfact:List Record(flg:Union("nil", "sqfr", "irred", "prime"), fctr:QFP, xpnt:Integer) lfact:= [[w.flg, if leadingCoefficient w.fctr =1 then map(#1::%,w.fctr) else (lc:=(leadingCoefficient w.fctr)::%; den1:=den1/lc**w.xpnt; map(#1::%/lc,w.fctr)), w.xpnt] for w in factorList ff] makeFR(map(#1::%/den1,unit(ff)),lfact) factorSquareFreePolynomial(pp) == zero? pp => 0 zero? degree pp => makeFR(pp,empty()) lcpp:=leadingCoefficient pp pp:=pp/lcpp denpp:="lcm"/[denom u for u in coefficients pp] ppD:DP:=map(retract(#1*denpp),pp) ff:=factorSquareFreePolynomial ppD den1:%:=denpp::%/lcpp lfact:List Record(flg:Union("nil", "sqfr", "irred", "prime"), fctr:QFP, xpnt:Integer) lfact:= [[w.flg, if leadingCoefficient w.fctr =1 then map(#1::%,w.fctr) else (lc:=(leadingCoefficient w.fctr)::%; den1:=den1/lc**w.xpnt; map(#1::%/lc,w.fctr)), w.xpnt] for w in factorList ff] makeFR(map(#1::%/den1,unit(ff)),lfact) @ \section{package LPEFRAC LinearPolynomialEquationByFractions} <<package LPEFRAC LinearPolynomialEquationByFractions>>= )abbrev package LPEFRAC LinearPolynomialEquationByFractions ++ Author: James Davenport ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Given a PolynomialFactorizationExplicit ring, this package ++ provides a defaulting rule for the \spad{solveLinearPolynomialEquation} ++ operation, by moving into the field of fractions, and solving it there ++ via the \spad{multiEuclidean} operation. LinearPolynomialEquationByFractions(R:PolynomialFactorizationExplicit): with solveLinearPolynomialEquationByFractions: ( _ List SparseUnivariatePolynomial R, _ SparseUnivariatePolynomial R) -> _ Union(List SparseUnivariatePolynomial R, "failed") ++ solveLinearPolynomialEquationByFractions([f1, ..., fn], g) ++ (where the fi are relatively prime to each other) ++ returns a list of ai such that ++ \spad{g/prod fi = sum ai/fi} ++ or returns "failed" if no such exists. == add SupR ==> SparseUnivariatePolynomial R F ==> Fraction R SupF ==> SparseUnivariatePolynomial F import UnivariatePolynomialCategoryFunctions2(R,SupR,F,SupF) lp : List SupR pp: SupR pF: SupF pullback : SupF -> Union(SupR,"failed") pullback(pF) == pF = 0 => 0 c:=retractIfCan leadingCoefficient pF c case "failed" => "failed" r:=pullback reductum pF r case "failed" => "failed" monomial(c,degree pF) + r solveLinearPolynomialEquationByFractions(lp,pp) == lpF:List SupF:=[map(#1@R::F,u) for u in lp] pF:SupF:=map(#1@R::F,pp) ans:= solveLinearPolynomialEquation(lpF,pF)$F ans case "failed" => "failed" [(vv:= pullback v; vv case "failed" => return "failed"; vv) for v in ans] @ \section{package FRAC2 FractionFunctions2} <<package FRAC2 FractionFunctions2>>= )abbrev package FRAC2 FractionFunctions2 ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: This package extends a map between integral domains to ++ a map between Fractions over those domains by applying the map to the ++ numerators and denominators. FractionFunctions2(A, B): Exports == Impl where A, B: IntegralDomain R ==> Fraction A S ==> Fraction B Exports ==> with map: (A -> B, R) -> S ++ map(func,frac) applies the function func to the numerator ++ and denominator of the fraction frac. Impl ==> add map(f, r) == map(f, r)$QuotientFieldCategoryFunctions2(A, B, R, S) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2010, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain LO Localize>> <<domain LA LocalAlgebra>> <<category QFCAT QuotientFieldCategory>> <<package QFCAT2 QuotientFieldCategoryFunctions2>> <<domain FRAC Fraction>> <<package LPEFRAC LinearPolynomialEquationByFractions>> <<package FRAC2 FractionFunctions2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}