\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra fraction.spad} \author{Dave Barton, Barry Trager, James Davenport} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain LO Localize} <<domain LO Localize>>= )abbrev domain LO Localize ++ Author: Dave Barton, Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: + - / numer denom ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: localization ++ References: ++ Description: Localize(M,R,S) produces fractions with numerators ++ from an R module M and denominators from some multiplicative subset ++ D of R. Localize(M:Module R, R:CommutativeRing, S:SubsetCategory(Monoid, R)): Module R with if M has OrderedAbelianGroup then OrderedAbelianGroup _/ :(%,S) -> % ++ x / d divides the element x by d. _/ :(M,S) -> % ++ m / d divides the element m by d. numer: % -> M ++ numer x returns the numerator of x. denom: % -> S ++ denom x returns the denominator of x. == add --representation Rep:= Record(num:M,den:S) --declarations x,y: % n: Integer m: M r: R d: S --definitions 0 == [0,1] zero? x == zero? (x.num) -x== [-x.num,x.den] x=y == y.den*x.num = x.den*y.num numer x == x.num denom x == x.den if M has OrderedAbelianGroup then x < y == -- if y.den::R < 0 then (x,y):=(y,x) -- if x.den::R < 0 then (x,y):=(y,x) y.den*x.num < x.den*y.num x+y == [y.den*x.num+x.den*y.num, x.den*y.den] n*x == [n*x.num,x.den] r*x == if r=x.den then [x.num,1] else [r*x.num,x.den] x/d == zero?(u:S:=d*x.den) => error "division by zero" [x.num,u] m/d == if zero? d then error "division by zero" else [m,d] coerce(x:%):OutputForm == -- one?(xd:=x.den) => (x.num)::OutputForm ((xd:=x.den) = 1) => (x.num)::OutputForm (x.num)::OutputForm / (xd::OutputForm) latex(x:%): String == -- one?(xd:=x.den) => latex(x.num) ((xd:=x.den) = 1) => latex(x.num) nl : String := concat("{", concat(latex(x.num), "}")$String)$String dl : String := concat("{", concat(latex(x.den), "}")$String)$String concat("{ ", concat(nl, concat(" \over ", concat(dl, " }")$String)$String)$String)$String @ \section{domain LA LocalAlgebra} <<domain LA LocalAlgebra>>= )abbrev domain LA LocalAlgebra ++ Author: Dave Barton, Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: LocalAlgebra produces the localization of an algebra, i.e. ++ fractions whose numerators come from some R algebra. LocalAlgebra(A: Algebra R, R: CommutativeRing, S: SubsetCategory(Monoid, R)): Algebra R with if A has OrderedRing then OrderedRing _/ : (%,S) -> % ++ x / d divides the element x by d. _/ : (A,S) -> % ++ a / d divides the element \spad{a} by d. numer: % -> A ++ numer x returns the numerator of x. denom: % -> S ++ denom x returns the denominator of x. == Localize(A, R, S) add 1 == 1$A / 1$S x:% * y:% == (numer(x) * numer(y)) / (denom(x) * denom(y)) characteristic() == characteristic()$A @ \section{category QFCAT QuotientFieldCategory} <<category QFCAT QuotientFieldCategory>>= )abbrev category QFCAT QuotientFieldCategory ++ Author: ++ Date Created: ++ Date Last Updated: 5th March 1996 ++ Basic Functions: + - * / numer denom ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: QuotientField(S) is the ++ category of fractions of an Integral Domain S. QuotientFieldCategory(S: IntegralDomain): Category == Join(Field, Algebra S, RetractableTo S, FullyEvalableOver S, DifferentialExtension S, FullyLinearlyExplicitRingOver S, Patternable S, FullyPatternMatchable S) with _/ : (S, S) -> % ++ d1 / d2 returns the fraction d1 divided by d2. numer : % -> S ++ numer(x) returns the numerator of the fraction x. denom : % -> S ++ denom(x) returns the denominator of the fraction x. numerator : % -> % ++ numerator(x) is the numerator of the fraction x converted to %. denominator : % -> % ++ denominator(x) is the denominator of the fraction x converted to %. if S has StepThrough then StepThrough if S has RetractableTo Integer then RetractableTo Integer RetractableTo Fraction Integer if S has OrderedSet then OrderedSet if S has OrderedIntegralDomain then OrderedIntegralDomain if S has RealConstant then RealConstant if S has ConvertibleTo InputForm then ConvertibleTo InputForm if S has CharacteristicZero then CharacteristicZero if S has CharacteristicNonZero then CharacteristicNonZero if S has RetractableTo Symbol then RetractableTo Symbol if S has EuclideanDomain then wholePart: % -> S ++ wholePart(x) returns the whole part of the fraction x ++ i.e. the truncated quotient of the numerator by the denominator. fractionPart: % -> % ++ fractionPart(x) returns the fractional part of x. ++ x = wholePart(x) + fractionPart(x) if S has IntegerNumberSystem then random: () -> % ++ random() returns a random fraction. ceiling : % -> S ++ ceiling(x) returns the smallest integral element above x. floor: % -> S ++ floor(x) returns the largest integral element below x. if S has PolynomialFactorizationExplicit then PolynomialFactorizationExplicit add import MatrixCommonDenominator(S, %) numerator(x) == numer(x)::% denominator(x) == denom(x) ::% if S has StepThrough then init() == init()$S / 1$S nextItem(n) == m:= nextItem(numer(n)) m case "failed" => error "We seem to have a Fraction of a finite object" m / 1 map(fn, x) == (fn numer x) / (fn denom x) reducedSystem(m:Matrix %):Matrix S == clearDenominator m characteristic() == characteristic()$S differentiate(x:%, deriv:S -> S) == n := numer x d := denom x (deriv n * d - n * deriv d) / (d**2) if S has ConvertibleTo InputForm then convert(x:%):InputForm == (convert numer x) / (convert denom x) if S has RealConstant then convert(x:%):Float == (convert numer x) / (convert denom x) convert(x:%):DoubleFloat == (convert numer x) / (convert denom x) -- Note that being a Join(OrderedSet,IntegralDomain) is not the same -- as being an OrderedIntegralDomain. if S has OrderedIntegralDomain then if S has canonicalUnitNormal then x:% < y:% == (numer x * denom y) < (numer y * denom x) else x:% < y:% == if denom(x) < 0 then (x,y):=(y,x) if denom(y) < 0 then (x,y):=(y,x) (numer x * denom y) < (numer y * denom x) else if S has OrderedSet then x:% < y:% == (numer x * denom y) < (numer y * denom x) if (S has EuclideanDomain) then fractionPart x == x - (wholePart(x)::%) if S has RetractableTo Symbol then coerce(s:Symbol):% == s::S::% retract(x:%):Symbol == retract(retract(x)@S) retractIfCan(x:%):Union(Symbol, "failed") == (r := retractIfCan(x)@Union(S,"failed")) case "failed" =>"failed" retractIfCan(r::S) if (S has ConvertibleTo Pattern Integer) then convert(x:%):Pattern(Integer)==(convert numer x)/(convert denom x) if (S has PatternMatchable Integer) then patternMatch(x:%, p:Pattern Integer, l:PatternMatchResult(Integer, %)) == patternMatch(x, p, l)$PatternMatchQuotientFieldCategory(Integer, S, %) if (S has ConvertibleTo Pattern Float) then convert(x:%):Pattern(Float) == (convert numer x)/(convert denom x) if (S has PatternMatchable Float) then patternMatch(x:%, p:Pattern Float, l:PatternMatchResult(Float, %)) == patternMatch(x, p, l)$PatternMatchQuotientFieldCategory(Float, S, %) if S has RetractableTo Integer then coerce(x:Fraction Integer):% == numer(x)::% / denom(x)::% if not(S is Integer) then retract(x:%):Integer == retract(retract(x)@S) retractIfCan(x:%):Union(Integer, "failed") == (u := retractIfCan(x)@Union(S, "failed")) case "failed" => "failed" retractIfCan(u::S) if S has IntegerNumberSystem then random():% == while zero?(d:=random()$S) repeat d random()$S / d reducedSystem(m:Matrix %, v:Vector %): Record(mat:Matrix S, vec:Vector S) == n := reducedSystem(horizConcat(v::Matrix(%), m))@Matrix(S) [subMatrix(n, minRowIndex n, maxRowIndex n, 1 + minColIndex n, maxColIndex n), column(n, minColIndex n)] @ \section{QFCAT.lsp BOOTSTRAP} {\bf QFCAT} depends on a chain of files. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf QFCAT} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf QFCAT.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<QFCAT.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFPARAMETER |QuotientFieldCategory;CAT| 'NIL) (DEFPARAMETER |QuotientFieldCategory;AL| 'NIL) (DEFUN |QuotientFieldCategory| (#0=#:G1388) (LET (#1=#:G1389) (COND ((SETQ #1# (|assoc| (|devaluate| #0#) |QuotientFieldCategory;AL|)) (CDR #1#)) (T (SETQ |QuotientFieldCategory;AL| (|cons5| (CONS (|devaluate| #0#) (SETQ #1# (|QuotientFieldCategory;| #0#))) |QuotientFieldCategory;AL|)) #1#)))) (DEFUN |QuotientFieldCategory;| (|t#1|) (PROG (#0=#:G1387) (RETURN (PROG1 (LETT #0# (|sublisV| (PAIR '(|t#1|) (LIST (|devaluate| |t#1|))) (COND (|QuotientFieldCategory;CAT|) ('T (LETT |QuotientFieldCategory;CAT| (|Join| (|Field|) (|Algebra| '|t#1|) (|RetractableTo| '|t#1|) (|FullyEvalableOver| '|t#1|) (|DifferentialExtension| '|t#1|) (|FullyLinearlyExplicitRingOver| '|t#1|) (|Patternable| '|t#1|) (|FullyPatternMatchable| '|t#1|) (|mkCategory| '|domain| '(((/ ($ |t#1| |t#1|)) T) ((|numer| (|t#1| $)) T) ((|denom| (|t#1| $)) T) ((|numerator| ($ $)) T) ((|denominator| ($ $)) T) ((|wholePart| (|t#1| $)) (|has| |t#1| (|EuclideanDomain|))) ((|fractionPart| ($ $)) (|has| |t#1| (|EuclideanDomain|))) ((|random| ($)) (|has| |t#1| (|IntegerNumberSystem|))) ((|ceiling| (|t#1| $)) (|has| |t#1| (|IntegerNumberSystem|))) ((|floor| (|t#1| $)) (|has| |t#1| (|IntegerNumberSystem|)))) '(((|StepThrough|) (|has| |t#1| (|StepThrough|))) ((|RetractableTo| (|Integer|)) (|has| |t#1| (|RetractableTo| (|Integer|)))) ((|RetractableTo| (|Fraction| (|Integer|))) (|has| |t#1| (|RetractableTo| (|Integer|)))) ((|OrderedSet|) (|has| |t#1| (|OrderedSet|))) ((|OrderedIntegralDomain|) (|has| |t#1| (|OrderedIntegralDomain|))) ((|RealConstant|) (|has| |t#1| (|RealConstant|))) ((|ConvertibleTo| (|InputForm|)) (|has| |t#1| (|ConvertibleTo| (|InputForm|)))) ((|CharacteristicZero|) (|has| |t#1| (|CharacteristicZero|))) ((|CharacteristicNonZero|) (|has| |t#1| (|CharacteristicNonZero|))) ((|RetractableTo| (|Symbol|)) (|has| |t#1| (|RetractableTo| (|Symbol|)))) ((|PolynomialFactorizationExplicit|) (|has| |t#1| (|PolynomialFactorizationExplicit|)))) 'NIL NIL)) . #1=(|QuotientFieldCategory|))))) . #1#) (SETELT #0# 0 (LIST '|QuotientFieldCategory| (|devaluate| |t#1|))))))) @ \section{QFCAT-.lsp BOOTSTRAP} {\bf QFCAT-} depends on {\bf QFCAT}. We need to break this cycle to build the algebra. So we keep a cached copy of the translated {\bf QFCAT-} category which we can write into the {\bf MID} directory. We compile the lisp code and copy the {\bf QFCAT-.o} file to the {\bf OUT} directory. This is eventually forcibly replaced by a recompiled version. Note that this code is not included in the generated catdef.spad file. <<QFCAT-.lsp BOOTSTRAP>>= (/VERSIONCHECK 2) (DEFUN |QFCAT-;numerator;2A;1| (|x| $) (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (QREFELT $ 9))) (DEFUN |QFCAT-;denominator;2A;2| (|x| $) (SPADCALL (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 9))) (DEFUN |QFCAT-;init;A;3| ($) (SPADCALL (|spadConstant| $ 13) (|spadConstant| $ 14) (QREFELT $ 15))) (DEFUN |QFCAT-;nextItem;AU;4| (|n| $) (PROG (|m|) (RETURN (SEQ (LETT |m| (SPADCALL (SPADCALL |n| (QREFELT $ 8)) (QREFELT $ 18)) |QFCAT-;nextItem;AU;4|) (EXIT (COND ((QEQCAR |m| 1) (|error| "We seem to have a Fraction of a finite object")) ('T (CONS 0 (SPADCALL (QCDR |m|) (|spadConstant| $ 14) (QREFELT $ 15)))))))))) (DEFUN |QFCAT-;map;M2A;5| (|fn| |x| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) |fn|) (SPADCALL (SPADCALL |x| (QREFELT $ 11)) |fn|) (QREFELT $ 15))) (DEFUN |QFCAT-;reducedSystem;MM;6| (|m| $) (SPADCALL |m| (QREFELT $ 26))) (DEFUN |QFCAT-;characteristic;Nni;7| ($) (SPADCALL (QREFELT $ 30))) (DEFUN |QFCAT-;differentiate;AMA;8| (|x| |deriv| $) (PROG (|n| |d|) (RETURN (SEQ (LETT |n| (SPADCALL |x| (QREFELT $ 8)) |QFCAT-;differentiate;AMA;8|) (LETT |d| (SPADCALL |x| (QREFELT $ 11)) |QFCAT-;differentiate;AMA;8|) (EXIT (SPADCALL (SPADCALL (SPADCALL (SPADCALL |n| |deriv|) |d| (QREFELT $ 32)) (SPADCALL |n| (SPADCALL |d| |deriv|) (QREFELT $ 32)) (QREFELT $ 33)) (SPADCALL |d| 2 (QREFELT $ 35)) (QREFELT $ 15))))))) (DEFUN |QFCAT-;convert;AIf;9| (|x| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (QREFELT $ 38)) (SPADCALL (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 38)) (QREFELT $ 39))) (DEFUN |QFCAT-;convert;AF;10| (|x| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (QREFELT $ 42)) (SPADCALL (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 42)) (QREFELT $ 43))) (DEFUN |QFCAT-;convert;ADf;11| (|x| $) (/ (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (QREFELT $ 46)) (SPADCALL (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 46)))) (DEFUN |QFCAT-;<;2AB;12| (|x| |y| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (SPADCALL |y| (QREFELT $ 11)) (QREFELT $ 32)) (SPADCALL (SPADCALL |y| (QREFELT $ 8)) (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 32)) (QREFELT $ 49))) (DEFUN |QFCAT-;<;2AB;13| (|x| |y| $) (PROG (|#G19| |#G20| |#G21| |#G22|) (RETURN (SEQ (COND ((SPADCALL (SPADCALL |x| (QREFELT $ 11)) (|spadConstant| $ 51) (QREFELT $ 49)) (PROGN (LETT |#G19| |y| |QFCAT-;<;2AB;13|) (LETT |#G20| |x| |QFCAT-;<;2AB;13|) (LETT |x| |#G19| |QFCAT-;<;2AB;13|) (LETT |y| |#G20| |QFCAT-;<;2AB;13|)))) (COND ((SPADCALL (SPADCALL |y| (QREFELT $ 11)) (|spadConstant| $ 51) (QREFELT $ 49)) (PROGN (LETT |#G21| |y| |QFCAT-;<;2AB;13|) (LETT |#G22| |x| |QFCAT-;<;2AB;13|) (LETT |x| |#G21| |QFCAT-;<;2AB;13|) (LETT |y| |#G22| |QFCAT-;<;2AB;13|)))) (EXIT (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (SPADCALL |y| (QREFELT $ 11)) (QREFELT $ 32)) (SPADCALL (SPADCALL |y| (QREFELT $ 8)) (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 32)) (QREFELT $ 49))))))) (DEFUN |QFCAT-;<;2AB;14| (|x| |y| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (SPADCALL |y| (QREFELT $ 11)) (QREFELT $ 32)) (SPADCALL (SPADCALL |y| (QREFELT $ 8)) (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 32)) (QREFELT $ 49))) (DEFUN |QFCAT-;fractionPart;2A;15| (|x| $) (SPADCALL |x| (SPADCALL (SPADCALL |x| (QREFELT $ 52)) (QREFELT $ 9)) (QREFELT $ 53))) (DEFUN |QFCAT-;coerce;SA;16| (|s| $) (SPADCALL (SPADCALL |s| (QREFELT $ 56)) (QREFELT $ 9))) (DEFUN |QFCAT-;retract;AS;17| (|x| $) (SPADCALL (SPADCALL |x| (QREFELT $ 58)) (QREFELT $ 59))) (DEFUN |QFCAT-;retractIfCan;AU;18| (|x| $) (PROG (|r|) (RETURN (SEQ (LETT |r| (SPADCALL |x| (QREFELT $ 62)) |QFCAT-;retractIfCan;AU;18|) (EXIT (COND ((QEQCAR |r| 1) (CONS 1 "failed")) ('T (SPADCALL (QCDR |r|) (QREFELT $ 64))))))))) (DEFUN |QFCAT-;convert;AP;19| (|x| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (QREFELT $ 67)) (SPADCALL (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 67)) (QREFELT $ 68))) (DEFUN |QFCAT-;patternMatch;AP2Pmr;20| (|x| |p| |l| $) (SPADCALL |x| |p| |l| (QREFELT $ 72))) (DEFUN |QFCAT-;convert;AP;21| (|x| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 8)) (QREFELT $ 76)) (SPADCALL (SPADCALL |x| (QREFELT $ 11)) (QREFELT $ 76)) (QREFELT $ 77))) (DEFUN |QFCAT-;patternMatch;AP2Pmr;22| (|x| |p| |l| $) (SPADCALL |x| |p| |l| (QREFELT $ 81))) (DEFUN |QFCAT-;coerce;FA;23| (|x| $) (SPADCALL (SPADCALL (SPADCALL |x| (QREFELT $ 86)) (QREFELT $ 87)) (SPADCALL (SPADCALL |x| (QREFELT $ 88)) (QREFELT $ 87)) (QREFELT $ 89))) (DEFUN |QFCAT-;retract;AI;24| (|x| $) (SPADCALL (SPADCALL |x| (QREFELT $ 58)) (QREFELT $ 91))) (DEFUN |QFCAT-;retractIfCan;AU;25| (|x| $) (PROG (|u|) (RETURN (SEQ (LETT |u| (SPADCALL |x| (QREFELT $ 62)) |QFCAT-;retractIfCan;AU;25|) (EXIT (COND ((QEQCAR |u| 1) (CONS 1 "failed")) ('T (SPADCALL (QCDR |u|) (QREFELT $ 94))))))))) (DEFUN |QFCAT-;random;A;26| ($) (PROG (|d|) (RETURN (SEQ (SEQ G190 (COND ((NULL (SPADCALL (LETT |d| (SPADCALL (QREFELT $ 96)) |QFCAT-;random;A;26|) (QREFELT $ 97))) (GO G191))) (SEQ (EXIT |d|)) NIL (GO G190) G191 (EXIT NIL)) (EXIT (SPADCALL (SPADCALL (QREFELT $ 96)) |d| (QREFELT $ 15))))))) (DEFUN |QFCAT-;reducedSystem;MVR;27| (|m| |v| $) (PROG (|n|) (RETURN (SEQ (LETT |n| (SPADCALL (SPADCALL (SPADCALL |v| (QREFELT $ 100)) |m| (QREFELT $ 101)) (QREFELT $ 102)) |QFCAT-;reducedSystem;MVR;27|) (EXIT (CONS (SPADCALL |n| (SPADCALL |n| (QREFELT $ 103)) (SPADCALL |n| (QREFELT $ 104)) (+ 1 (SPADCALL |n| (QREFELT $ 105))) (SPADCALL |n| (QREFELT $ 106)) (QREFELT $ 107)) (SPADCALL |n| (SPADCALL |n| (QREFELT $ 105)) (QREFELT $ 109)))))))) (DEFUN |QuotientFieldCategory&| (|#1| |#2|) (PROG (|dv$1| |dv$2| |dv$| $ |pv$|) (RETURN (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|QuotientFieldCategory&|)) (LETT |dv$2| (|devaluate| |#2|) . #0#) (LETT |dv$| (LIST '|QuotientFieldCategory&| |dv$1| |dv$2|) . #0#) (LETT $ (GETREFV 119) . #0#) (QSETREFV $ 0 |dv$|) (QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasCategory| |#2| '(|PolynomialFactorizationExplicit|)) (|HasCategory| |#2| '(|IntegerNumberSystem|)) (|HasCategory| |#2| '(|EuclideanDomain|)) (|HasCategory| |#2| '(|RetractableTo| (|Symbol|))) (|HasCategory| |#2| '(|CharacteristicNonZero|)) (|HasCategory| |#2| '(|CharacteristicZero|)) (|HasCategory| |#2| '(|ConvertibleTo| (|InputForm|))) (|HasCategory| |#2| '(|RealConstant|)) (|HasCategory| |#2| '(|OrderedIntegralDomain|)) (|HasCategory| |#2| '(|OrderedSet|)) (|HasCategory| |#2| '(|RetractableTo| (|Integer|))) (|HasCategory| |#2| '(|StepThrough|)))) . #0#)) (|stuffDomainSlots| $) (QSETREFV $ 6 |#1|) (QSETREFV $ 7 |#2|) (COND ((|testBitVector| |pv$| 12) (PROGN (QSETREFV $ 16 (CONS (|dispatchFunction| |QFCAT-;init;A;3|) $)) (QSETREFV $ 20 (CONS (|dispatchFunction| |QFCAT-;nextItem;AU;4|) $))))) (COND ((|testBitVector| |pv$| 7) (QSETREFV $ 40 (CONS (|dispatchFunction| |QFCAT-;convert;AIf;9|) $)))) (COND ((|testBitVector| |pv$| 8) (PROGN (QSETREFV $ 44 (CONS (|dispatchFunction| |QFCAT-;convert;AF;10|) $)) (QSETREFV $ 47 (CONS (|dispatchFunction| |QFCAT-;convert;ADf;11|) $))))) (COND ((|testBitVector| |pv$| 9) (COND ((|HasAttribute| |#2| '|canonicalUnitNormal|) (QSETREFV $ 50 (CONS (|dispatchFunction| |QFCAT-;<;2AB;12|) $))) ('T (QSETREFV $ 50 (CONS (|dispatchFunction| |QFCAT-;<;2AB;13|) $))))) ((|testBitVector| |pv$| 10) (QSETREFV $ 50 (CONS (|dispatchFunction| |QFCAT-;<;2AB;14|) $)))) (COND ((|testBitVector| |pv$| 3) (QSETREFV $ 54 (CONS (|dispatchFunction| |QFCAT-;fractionPart;2A;15|) $)))) (COND ((|testBitVector| |pv$| 4) (PROGN (QSETREFV $ 57 (CONS (|dispatchFunction| |QFCAT-;coerce;SA;16|) $)) (QSETREFV $ 60 (CONS (|dispatchFunction| |QFCAT-;retract;AS;17|) $)) (QSETREFV $ 65 (CONS (|dispatchFunction| |QFCAT-;retractIfCan;AU;18|) $))))) (COND ((|HasCategory| |#2| '(|ConvertibleTo| (|Pattern| (|Integer|)))) (PROGN (QSETREFV $ 69 (CONS (|dispatchFunction| |QFCAT-;convert;AP;19|) $)) (COND ((|HasCategory| |#2| '(|PatternMatchable| (|Integer|))) (QSETREFV $ 74 (CONS (|dispatchFunction| |QFCAT-;patternMatch;AP2Pmr;20|) $))))))) (COND ((|HasCategory| |#2| '(|ConvertibleTo| (|Pattern| (|Float|)))) (PROGN (QSETREFV $ 78 (CONS (|dispatchFunction| |QFCAT-;convert;AP;21|) $)) (COND ((|HasCategory| |#2| '(|PatternMatchable| (|Float|))) (QSETREFV $ 83 (CONS (|dispatchFunction| |QFCAT-;patternMatch;AP2Pmr;22|) $))))))) (COND ((|testBitVector| |pv$| 11) (PROGN (QSETREFV $ 90 (CONS (|dispatchFunction| |QFCAT-;coerce;FA;23|) $)) (COND ((|domainEqual| |#2| (|Integer|))) ('T (PROGN (QSETREFV $ 92 (CONS (|dispatchFunction| |QFCAT-;retract;AI;24|) $)) (QSETREFV $ 95 (CONS (|dispatchFunction| |QFCAT-;retractIfCan;AU;25|) $)))))))) (COND ((|testBitVector| |pv$| 2) (QSETREFV $ 98 (CONS (|dispatchFunction| |QFCAT-;random;A;26|) $)))) $)))) (MAKEPROP '|QuotientFieldCategory&| '|infovec| (LIST '#(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|local| |#2|) (0 . |numer|) (5 . |coerce|) |QFCAT-;numerator;2A;1| (10 . |denom|) |QFCAT-;denominator;2A;2| (15 . |init|) (19 . |One|) (23 . /) (29 . |init|) (|Union| $ '"failed") (33 . |nextItem|) (38 . |One|) (42 . |nextItem|) (|Mapping| 7 7) |QFCAT-;map;M2A;5| (|Matrix| 7) (|Matrix| 6) (|MatrixCommonDenominator| 7 6) (47 . |clearDenominator|) (|Matrix| $) |QFCAT-;reducedSystem;MM;6| (|NonNegativeInteger|) (52 . |characteristic|) |QFCAT-;characteristic;Nni;7| (56 . *) (62 . -) (|PositiveInteger|) (68 . **) |QFCAT-;differentiate;AMA;8| (|InputForm|) (74 . |convert|) (79 . /) (85 . |convert|) (|Float|) (90 . |convert|) (95 . /) (101 . |convert|) (|DoubleFloat|) (106 . |convert|) (111 . |convert|) (|Boolean|) (116 . <) (122 . <) (128 . |Zero|) (132 . |wholePart|) (137 . -) (143 . |fractionPart|) (|Symbol|) (148 . |coerce|) (153 . |coerce|) (158 . |retract|) (163 . |retract|) (168 . |retract|) (|Union| 7 '"failed") (173 . |retractIfCan|) (|Union| 55 '"failed") (178 . |retractIfCan|) (183 . |retractIfCan|) (|Pattern| 84) (188 . |convert|) (193 . /) (199 . |convert|) (|PatternMatchResult| 84 6) (|PatternMatchQuotientFieldCategory| 84 7 6) (204 . |patternMatch|) (|PatternMatchResult| 84 $) (211 . |patternMatch|) (|Pattern| 41) (218 . |convert|) (223 . /) (229 . |convert|) (|PatternMatchResult| 41 6) (|PatternMatchQuotientFieldCategory| 41 7 6) (234 . |patternMatch|) (|PatternMatchResult| 41 $) (241 . |patternMatch|) (|Integer|) (|Fraction| 84) (248 . |numer|) (253 . |coerce|) (258 . |denom|) (263 . /) (269 . |coerce|) (274 . |retract|) (279 . |retract|) (|Union| 84 '"failed") (284 . |retractIfCan|) (289 . |retractIfCan|) (294 . |random|) (298 . |zero?|) (303 . |random|) (|Vector| 6) (307 . |coerce|) (312 . |horizConcat|) (318 . |reducedSystem|) (323 . |minRowIndex|) (328 . |maxRowIndex|) (333 . |minColIndex|) (338 . |maxColIndex|) (343 . |subMatrix|) (|Vector| 7) (352 . |column|) (|Record| (|:| |mat| 23) (|:| |vec| 108)) (|Vector| $) |QFCAT-;reducedSystem;MVR;27| (|Union| 85 '"failed") (|Record| (|:| |mat| 115) (|:| |vec| (|Vector| 84))) (|Matrix| 84) (|List| 55) (|List| 29) (|OutputForm|)) '#(|retractIfCan| 358 |retract| 368 |reducedSystem| 378 |random| 389 |patternMatch| 393 |numerator| 407 |nextItem| 412 |map| 417 |init| 423 |fractionPart| 427 |differentiate| 432 |denominator| 438 |convert| 443 |coerce| 468 |characteristic| 478 < 482) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() (|makeByteWordVec2| 112 '(1 6 7 0 8 1 6 0 7 9 1 6 7 0 11 0 7 0 13 0 7 0 14 2 6 0 7 7 15 0 0 0 16 1 7 17 0 18 0 6 0 19 1 0 17 0 20 1 25 23 24 26 0 7 29 30 2 7 0 0 0 32 2 7 0 0 0 33 2 7 0 0 34 35 1 7 37 0 38 2 37 0 0 0 39 1 0 37 0 40 1 7 41 0 42 2 41 0 0 0 43 1 0 41 0 44 1 7 45 0 46 1 0 45 0 47 2 7 48 0 0 49 2 0 48 0 0 50 0 7 0 51 1 6 7 0 52 2 6 0 0 0 53 1 0 0 0 54 1 7 0 55 56 1 0 0 55 57 1 6 7 0 58 1 7 55 0 59 1 0 55 0 60 1 6 61 0 62 1 7 63 0 64 1 0 63 0 65 1 7 66 0 67 2 66 0 0 0 68 1 0 66 0 69 3 71 70 6 66 70 72 3 0 73 0 66 73 74 1 7 75 0 76 2 75 0 0 0 77 1 0 75 0 78 3 80 79 6 75 79 81 3 0 82 0 75 82 83 1 85 84 0 86 1 6 0 84 87 1 85 84 0 88 2 6 0 0 0 89 1 0 0 85 90 1 7 84 0 91 1 0 84 0 92 1 7 93 0 94 1 0 93 0 95 0 7 0 96 1 7 48 0 97 0 0 0 98 1 24 0 99 100 2 24 0 0 0 101 1 6 23 27 102 1 23 84 0 103 1 23 84 0 104 1 23 84 0 105 1 23 84 0 106 5 23 0 0 84 84 84 84 107 2 23 108 0 84 109 1 0 93 0 95 1 0 63 0 65 1 0 84 0 92 1 0 55 0 60 2 0 110 27 111 112 1 0 23 27 28 0 0 0 98 3 0 82 0 75 82 83 3 0 73 0 66 73 74 1 0 0 0 10 1 0 17 0 20 2 0 0 21 0 22 0 0 0 16 1 0 0 0 54 2 0 0 0 21 36 1 0 0 0 12 1 0 45 0 47 1 0 37 0 40 1 0 41 0 44 1 0 66 0 69 1 0 75 0 78 1 0 0 55 57 1 0 0 85 90 0 0 29 31 2 0 48 0 0 50))))) '|lookupComplete|)) @ \section{package QFCAT2 QuotientFieldCategoryFunctions2} <<package QFCAT2 QuotientFieldCategoryFunctions2>>= )abbrev package QFCAT2 QuotientFieldCategoryFunctions2 ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ This package extends a function between integral domains ++ to a mapping between their quotient fields. QuotientFieldCategoryFunctions2(A, B, R, S): Exports == Impl where A, B: IntegralDomain R : QuotientFieldCategory(A) S : QuotientFieldCategory(B) Exports ==> with map: (A -> B, R) -> S ++ map(func,frac) applies the function func to the numerator ++ and denominator of frac. Impl ==> add map(f, r) == f(numer r) / f(denom r) @ \section{domain FRAC Fraction} <<domain FRAC Fraction>>= )abbrev domain FRAC Fraction ++ Author: ++ Date Created: ++ Date Last Updated: 12 February 1992 ++ Basic Functions: Field, numer, denom ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: fraction, localization ++ References: ++ Description: Fraction takes an IntegralDomain S and produces ++ the domain of Fractions with numerators and denominators from S. ++ If S is also a GcdDomain, then gcd's between numerator and ++ denominator will be cancelled during all operations. Fraction(S: IntegralDomain): QuotientFieldCategory S with if S has IntegerNumberSystem and S has OpenMath then OpenMath if S has canonical and S has GcdDomain and S has canonicalUnitNormal then canonical ++ \spad{canonical} means that equal elements are in fact identical. == LocalAlgebra(S, S, S) add Rep:= Record(num:S, den:S) coerce(d:S):% == [d,1] zero?(x:%) == zero? x.num if S has GcdDomain and S has canonicalUnitNormal then retract(x:%):S == -- one?(x.den) => x.num ((x.den) = 1) => x.num error "Denominator not equal to 1" retractIfCan(x:%):Union(S, "failed") == -- one?(x.den) => x.num ((x.den) = 1) => x.num "failed" else retract(x:%):S == (a:= x.num exquo x.den) case "failed" => error "Denominator not equal to 1" a retractIfCan(x:%):Union(S,"failed") == x.num exquo x.den if S has EuclideanDomain then wholePart x == -- one?(x.den) => x.num ((x.den) = 1) => x.num x.num quo x.den if S has IntegerNumberSystem then floor x == -- one?(x.den) => x.num ((x.den) = 1) => x.num x < 0 => -ceiling(-x) wholePart x ceiling x == -- one?(x.den) => x.num ((x.den) = 1) => x.num x < 0 => -floor(-x) 1 + wholePart x if S has OpenMath then -- TODO: somwhere this file does something which redefines the division -- operator. Doh! writeOMFrac(dev: OpenMathDevice, x: %): Void == OMputApp(dev) OMputSymbol(dev, "nums1", "rational") OMwrite(dev, x.num, false) OMwrite(dev, x.den, false) OMputEndApp(dev) OMwrite(x: %): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := _ OMopenString(sp pretend String, OMencodingXML) OMputObject(dev) writeOMFrac(dev, x) OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s OMwrite(x: %, wholeObj: Boolean): String == s: String := "" sp := OM_-STRINGTOSTRINGPTR(s)$Lisp dev: OpenMathDevice := _ OMopenString(sp pretend String, OMencodingXML) if wholeObj then OMputObject(dev) writeOMFrac(dev, x) if wholeObj then OMputEndObject(dev) OMclose(dev) s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String s OMwrite(dev: OpenMathDevice, x: %): Void == OMputObject(dev) writeOMFrac(dev, x) OMputEndObject(dev) OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void == if wholeObj then OMputObject(dev) writeOMFrac(dev, x) if wholeObj then OMputEndObject(dev) if S has GcdDomain then cancelGcd: % -> S normalize: % -> % normalize x == zero?(x.num) => 0 -- one?(x.den) => x ((x.den) = 1) => x uca := unitNormal(x.den) zero?(x.den := uca.canonical) => error "division by zero" x.num := x.num * uca.associate x recip x == zero?(x.num) => "failed" normalize [x.den, x.num] cancelGcd x == -- one?(x.den) => x.den ((x.den) = 1) => x.den d := gcd(x.num, x.den) xn := x.num exquo d xn case "failed" => error "gcd not gcd in QF cancelGcd (numerator)" xd := x.den exquo d xd case "failed" => error "gcd not gcd in QF cancelGcd (denominator)" x.num := xn :: S x.den := xd :: S d nn:S / dd:S == zero? dd => error "division by zero" cancelGcd(z := [nn, dd]) normalize z x + y == zero? y => x zero? x => y z := [x.den,y.den] d := cancelGcd z g := [z.den * x.num + z.num * y.num, d] cancelGcd g g.den := g.den * z.num * z.den normalize g -- We can not rely on the defaulting mechanism -- to supply a definition for -, even though this -- definition would do, for thefollowing reasons: -- 1) The user could have defined a subtraction -- in Localize, which would not work for -- QuotientField; -- 2) even if he doesn't, the system currently -- places a default definition in Localize, -- which uses Localize's +, which does not -- cancel gcds x - y == zero? y => x z := [x.den, y.den] d := cancelGcd z g := [z.den * x.num - z.num * y.num, d] cancelGcd g g.den := g.den * z.num * z.den normalize g x:% * y:% == zero? x or zero? y => 0 -- one? x => y (x = 1) => y -- one? y => x (y = 1) => x (x, y) := ([x.num, y.den], [y.num, x.den]) cancelGcd x; cancelGcd y; normalize [x.num * y.num, x.den * y.den] n:Integer * x:% == y := [n::S, x.den] cancelGcd y normalize [x.num * y.num, y.den] nn:S * x:% == y := [nn, x.den] cancelGcd y normalize [x.num * y.num, y.den] differentiate(x:%, deriv:S -> S) == y := [deriv(x.den), x.den] d := cancelGcd(y) y.num := deriv(x.num) * y.den - x.num * y.num (d, y.den) := (y.den, d) cancelGcd y y.den := y.den * d * d normalize y if S has canonicalUnitNormal then x = y == (x.num = y.num) and (x.den = y.den) --x / dd == (cancelGcd (z:=[x.num,dd*x.den]); normalize z) -- one? x == one? (x.num) and one? (x.den) one? x == ((x.num) = 1) and ((x.den) = 1) -- again assuming canonical nature of representation else nn:S/dd:S == if zero? dd then error "division by zero" else [nn,dd] recip x == zero?(x.num) => "failed" [x.den, x.num] if (S has RetractableTo Fraction Integer) then retract(x:%):Fraction(Integer) == retract(retract(x)@S) retractIfCan(x:%):Union(Fraction Integer, "failed") == (u := retractIfCan(x)@Union(S, "failed")) case "failed" => "failed" retractIfCan(u::S) else if (S has RetractableTo Integer) then retract(x:%):Fraction(Integer) == retract(numer x) / retract(denom x) retractIfCan(x:%):Union(Fraction Integer, "failed") == (n := retractIfCan numer x) case "failed" => "failed" (d := retractIfCan denom x) case "failed" => "failed" (n::Integer) / (d::Integer) QFP ==> SparseUnivariatePolynomial % DP ==> SparseUnivariatePolynomial S import UnivariatePolynomialCategoryFunctions2(%,QFP,S,DP) import UnivariatePolynomialCategoryFunctions2(S,DP,%,QFP) if S has GcdDomain then gcdPolynomial(pp,qq) == zero? pp => qq zero? qq => pp zero? degree pp or zero? degree qq => 1 denpp:="lcm"/[denom u for u in coefficients pp] ppD:DP:=map(retract(#1*denpp),pp) denqq:="lcm"/[denom u for u in coefficients qq] qqD:DP:=map(retract(#1*denqq),qq) g:=gcdPolynomial(ppD,qqD) zero? degree g => 1 -- one? (lc:=leadingCoefficient g) => map(#1::%,g) ((lc:=leadingCoefficient g) = 1) => map(#1::%,g) map(#1 / lc,g) if (S has PolynomialFactorizationExplicit) then -- we'll let the solveLinearPolynomialEquations operator -- default from Field pp,qq: QFP lpp: List QFP import Factored SparseUnivariatePolynomial % if S has CharacteristicNonZero then if S has canonicalUnitNormal and S has GcdDomain then charthRoot x == n:= charthRoot x.num n case "failed" => "failed" d:=charthRoot x.den d case "failed" => "failed" n/d else charthRoot x == -- to find x = p-th root of n/d -- observe that xd is p-th root of n*d**(p-1) ans:=charthRoot(x.num * (x.den)**(characteristic()$%-1)::NonNegativeInteger) ans case "failed" => "failed" ans / x.den clear: List % -> List S clear l == d:="lcm"/[x.den for x in l] [ x.num * (d exquo x.den)::S for x in l] mat: Matrix % conditionP mat == matD: Matrix S matD:= matrix [ clear l for l in listOfLists mat ] ansD := conditionP matD ansD case "failed" => "failed" ansDD:=ansD :: Vector(S) [ ansDD(i)::% for i in 1..#ansDD]$Vector(%) factorPolynomial(pp) == zero? pp => 0 denpp:="lcm"/[denom u for u in coefficients pp] ppD:DP:=map(retract(#1*denpp),pp) ff:=factorPolynomial ppD den1:%:=denpp::% lfact:List Record(flg:Union("nil", "sqfr", "irred", "prime"), fctr:QFP, xpnt:Integer) lfact:= [[w.flg, if leadingCoefficient w.fctr =1 then map(#1::%,w.fctr) else (lc:=(leadingCoefficient w.fctr)::%; den1:=den1/lc**w.xpnt; map(#1::%/lc,w.fctr)), w.xpnt] for w in factorList ff] makeFR(map(#1::%/den1,unit(ff)),lfact) factorSquareFreePolynomial(pp) == zero? pp => 0 degree pp = 0 => makeFR(pp,empty()) lcpp:=leadingCoefficient pp pp:=pp/lcpp denpp:="lcm"/[denom u for u in coefficients pp] ppD:DP:=map(retract(#1*denpp),pp) ff:=factorSquareFreePolynomial ppD den1:%:=denpp::%/lcpp lfact:List Record(flg:Union("nil", "sqfr", "irred", "prime"), fctr:QFP, xpnt:Integer) lfact:= [[w.flg, if leadingCoefficient w.fctr =1 then map(#1::%,w.fctr) else (lc:=(leadingCoefficient w.fctr)::%; den1:=den1/lc**w.xpnt; map(#1::%/lc,w.fctr)), w.xpnt] for w in factorList ff] makeFR(map(#1::%/den1,unit(ff)),lfact) @ \section{package LPEFRAC LinearPolynomialEquationByFractions} <<package LPEFRAC LinearPolynomialEquationByFractions>>= )abbrev package LPEFRAC LinearPolynomialEquationByFractions ++ Author: James Davenport ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ Given a PolynomialFactorizationExplicit ring, this package ++ provides a defaulting rule for the \spad{solveLinearPolynomialEquation} ++ operation, by moving into the field of fractions, and solving it there ++ via the \spad{multiEuclidean} operation. LinearPolynomialEquationByFractions(R:PolynomialFactorizationExplicit): with solveLinearPolynomialEquationByFractions: ( _ List SparseUnivariatePolynomial R, _ SparseUnivariatePolynomial R) -> _ Union(List SparseUnivariatePolynomial R, "failed") ++ solveLinearPolynomialEquationByFractions([f1, ..., fn], g) ++ (where the fi are relatively prime to each other) ++ returns a list of ai such that ++ \spad{g/prod fi = sum ai/fi} ++ or returns "failed" if no such exists. == add SupR ==> SparseUnivariatePolynomial R F ==> Fraction R SupF ==> SparseUnivariatePolynomial F import UnivariatePolynomialCategoryFunctions2(R,SupR,F,SupF) lp : List SupR pp: SupR pF: SupF pullback : SupF -> Union(SupR,"failed") pullback(pF) == pF = 0 => 0 c:=retractIfCan leadingCoefficient pF c case "failed" => "failed" r:=pullback reductum pF r case "failed" => "failed" monomial(c,degree pF) + r solveLinearPolynomialEquationByFractions(lp,pp) == lpF:List SupF:=[map(#1@R::F,u) for u in lp] pF:SupF:=map(#1@R::F,pp) ans:= solveLinearPolynomialEquation(lpF,pF)$F ans case "failed" => "failed" [(vv:= pullback v; vv case "failed" => return "failed"; vv) for v in ans] @ \section{package FRAC2 FractionFunctions2} <<package FRAC2 FractionFunctions2>>= )abbrev package FRAC2 FractionFunctions2 ++ Author: ++ Date Created: ++ Date Last Updated: ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: This package extends a map between integral domains to ++ a map between Fractions over those domains by applying the map to the ++ numerators and denominators. FractionFunctions2(A, B): Exports == Impl where A, B: IntegralDomain R ==> Fraction A S ==> Fraction B Exports ==> with map: (A -> B, R) -> S ++ map(func,frac) applies the function func to the numerator ++ and denominator of the fraction frac. Impl ==> add map(f, r) == map(f, r)$QuotientFieldCategoryFunctions2(A, B, R, S) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain LO Localize>> <<domain LA LocalAlgebra>> <<category QFCAT QuotientFieldCategory>> <<package QFCAT2 QuotientFieldCategoryFunctions2>> <<domain FRAC Fraction>> <<package LPEFRAC LinearPolynomialEquationByFractions>> <<package FRAC2 FractionFunctions2>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}