\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra fr.spad}
\author{Robert S. Sutor, Johnannes Grabmeier}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
-- This file contains a domain and packages for manipulating objects
-- in factored form.
\section{domain FR Factored}
<<domain FR Factored>>=
)abbrev domain FR Factored
++ Author: Robert S. Sutor
++ Date Created: 1985
++ Date Last Modified: May 19, 2013.
++ Change History:
++   21 Jan 1991  J Grabmeier     Corrected a bug in exquo.
++   16 Aug 1994  R S Sutor       Improved convert to InputForm
++ Basic Operations:
++   expand, exponent, factorList, factors, flagFactor, irreducibleFactor,
++   makeFR, map, nilFactor, nthFactor, nthFlag, numberOfFactors,
++   primeFactor, sqfrFactor, unit, unitNormalize,
++ Related Constructors: FactoredFunctionUtilities, FactoredFunctions2
++ Also See:
++ AMS Classifications: 11A51, 11Y05
++ Keywords: factorization, prime, square-free, irreducible, factor
++ References:
++ Description:
++   \spadtype{Factored} creates a domain whose objects are kept in
++   factored form as long as possible.  Thus certain operations like
++   multiplication and gcd are relatively easy to do.  Others, like
++   addition require somewhat more work, and unless the argument
++   domain provides a factor function, the result may not be
++   completely factored.  Each object consists of a unit and a list of
++   factors, where a factor has a member of R (the "base"), and
++   exponent and a flag indicating what is known about the base.  A
++   flag may be one of "nil", "sqfr", "irred" or "prime", which respectively mean
++   that nothing is known about the base, it is square-free, it is
++   irreducible, or it is prime.  The current
++   restriction to integral domains allows simplification to be
++   performed without worrying about multiplication order.

Factored(R: IntegralDomain): Exports == Implementation where
  fUnion ==> Union("nil", "sqfr", "irred", "prime")
  FF     ==> Record(flg: fUnion, fctr: R, xpnt: Integer)
  SRFE   ==> Set(Record(factor:R, exponent:Integer))

  Exports == Join(IntegralDomain, DifferentialExtension R, Algebra R,
               FullyEvalableOver R, FullyRetractableTo R,Functorial R) with
    expand: % -> R
      ++ expand(f) multiplies the unit and factors together, yielding an
      ++ "unfactored" object. Note: this is purposely not called \spadfun{coerce} which would
      ++ cause the interpreter to do this automatically.

    exponent:  % -> Integer
      ++ exponent(u) returns the exponent of the first factor of
      ++ \spadvar{u}, or 0 if the factored form consists solely of a unit.

    makeFR  : (R, List FF) -> %
      ++ makeFR(unit,listOfFactors) creates a factored object (for
      ++ use by factoring code).

    factorList : % -> List FF
      ++ factorList(u) returns the list of factors with flags (for
      ++ use by factoring code).

    nilFactor: (R, Integer) -> %
      ++ nilFactor(base,exponent) creates a factored object with
      ++ a single factor with no information about the kind of
      ++ base (flag = "nil").

    factors: % -> List Record(factor:R, exponent:Integer)
      ++ factors(u) returns a list of the factors in a form suitable
      ++ for iteration. That is, it returns a list where each element
      ++ is a record containing a base and exponent.  The original
      ++ object is the product of all the factors and the unit (which
      ++ can be extracted by \axiom{unit(u)}).

    irreducibleFactor: (R, Integer) -> %
      ++ irreducibleFactor(base,exponent) creates a factored object with
      ++ a single factor whose base is asserted to be irreducible
      ++ (flag = "irred").

    nthExponent: (%, Integer) -> Integer
      ++ nthExponent(u,n) returns the exponent of the nth factor of
      ++ \spadvar{u}.  If \spadvar{n} is not a valid index for a factor
      ++ (for example, less than 1 or too big), 0 is returned.

    nthFactor:  (%,Integer) -> R
      ++ nthFactor(u,n) returns the base of the nth factor of
      ++ \spadvar{u}.  If \spadvar{n} is not a valid index for a factor
      ++ (for example, less than 1 or too big), 1 is returned.  If
      ++ \spadvar{u} consists only of a unit, the unit is returned.

    nthFlag:    (%,Integer) -> fUnion
      ++ nthFlag(u,n) returns the information flag of the nth factor of
      ++ \spadvar{u}.  If \spadvar{n} is not a valid index for a factor
      ++ (for example, less than 1 or too big), "nil" is returned.

    numberOfFactors : %  -> NonNegativeInteger
      ++ numberOfFactors(u) returns the number of factors in \spadvar{u}.

    primeFactor:   (R,Integer) -> %
      ++ primeFactor(base,exponent) creates a factored object with
      ++ a single factor whose base is asserted to be prime
      ++ (flag = "prime").

    sqfrFactor:   (R,Integer) -> %
      ++ sqfrFactor(base,exponent) creates a factored object with
      ++ a single factor whose base is asserted to be square-free
      ++ (flag = "sqfr").

    flagFactor: (R,Integer, fUnion) -> %
      ++ flagFactor(base,exponent,flag) creates a factored object with
      ++ a single factor whose base is asserted to be properly
      ++ described by the information flag.

    unit:    % -> R
      ++ unit(u) extracts the unit part of the factorization.

    unitNormalize: % -> %
      ++ unitNormalize(u) normalizes the unit part of the factorization.
      ++ For example, when working with factored integers, this operation will
      ++ ensure that the bases are all positive integers.

    -- the following operations are conditional on R

    if R has GcdDomain then GcdDomain
    if R has RealConstant then RealConstant
    if R has UniqueFactorizationDomain then UniqueFactorizationDomain

    if R has ConvertibleTo InputForm then ConvertibleTo InputForm

    if R has IntegerNumberSystem then
      rational?    : % -> Boolean
        ++ rational?(u) tests if \spadvar{u} is actually a
        ++ rational number (see \spadtype{Fraction Integer}).
      rational     : % -> Fraction Integer
        ++ rational(u) assumes spadvar{u} is actually a rational number
        ++ and does the conversion to rational number
        ++ (see \spadtype{Fraction Integer}).
      rationalIfCan: % -> Union(Fraction Integer, "failed")
        ++ rationalIfCan(u) returns a rational number if u
        ++ really is one, and "failed" otherwise.

    if R has Eltable(%, %) then Eltable(%, %)
    if R has Evalable(%) then Evalable(%)
    if R has InnerEvalable(Symbol, %) then InnerEvalable(Symbol, %)

  Implementation ==> add

  -- Representation:
    -- Note: exponents are allowed to be integers so that some special cases
    -- may be used in simplications
    Rep := Record(unt:R, fct:List FF)

    if R has ConvertibleTo InputForm then
      convert(x:%):InputForm ==
        empty?(lf := reverse factorList x) => convert(unit x)@InputForm
        l := empty()$List(InputForm)
        for rec in lf repeat
          ((rec.fctr) = 1) => messagePrint("WARNING (convert$Factored):_
 1 should not appear as factor.")$OutputForm
          iFactor : InputForm := binary( convert("::" :: Symbol)@InputForm, [convert(rec.fctr)@InputForm, (devaluate R)$Lisp :: InputForm ]$List(InputForm) )
          iExpon  : InputForm := convert(rec.xpnt)@InputForm
          iFun    : List InputForm :=
            rec.flg case "nil" =>
               [convert("nilFactor" :: Symbol)@InputForm, iFactor, iExpon]$List(InputForm)
            rec.flg case "sqfr" =>
               [convert("sqfrFactor" :: Symbol)@InputForm, iFactor, iExpon]$List(InputForm)
            rec.flg case "prime" =>
               [convert("primeFactor" :: Symbol)@InputForm, iFactor, iExpon]$List(InputForm)
            rec.flg case "irred" =>
               [convert("irreducibleFactor" :: Symbol)@InputForm, iFactor, iExpon]$List(InputForm)
            nil$List(InputForm)
          l := concat( iFun pretend InputForm, l )
--        one?(rec.xpnt) =>
--          l := concat(convert(rec.fctr)@InputForm, l)
--        l := concat(convert(rec.fctr)@InputForm ** rec.xpnt, l)
        empty? l => convert(unit x)@InputForm
        if not one? unit x then l := concat(convert(unit x)@InputForm,l)
        empty? rest l => first l
        binary(convert(_*::Symbol)@InputForm, l)@InputForm

  -- Private function signatures:
    reciprocal              : % -> %
    qexpand                 : % -> R
    negexp?                 : % -> Boolean
    SimplifyFactorization   : List FF -> List FF
    LispLessP               : (FF, FF) -> Boolean
    mkFF                    : (R, List FF) -> %
    SimplifyFactorization1  : (FF, List FF) -> List FF
    stricterFlag            : (fUnion, fUnion) -> fUnion

    nilFactor(r, i)      == flagFactor(r, i, "nil")
    sqfrFactor(r, i)     == flagFactor(r, i, "sqfr")
    irreducibleFactor(r, i)      == flagFactor(r, i, "irred")
    primeFactor(r, i)    == flagFactor(r, i, "prime")
    unit? u              == (empty? u.fct) and (not zero? u.unt)
    factorList u         == u.fct
    unit u               == u.unt
    numberOfFactors u    == # u.fct
    0                    == [1, [["nil", 0, 1]$FF]]
    zero? u              == # u.fct = 1 and
                             (first u.fct).flg case "nil" and
                              zero? (first u.fct).fctr and
                               one? u.unt
    1                    == [1, empty()]
    one? u               == empty? u.fct and u.unt = 1
    mkFF(r, x)           == [r, x]
    coerce(j:Integer):%  == (j::R)::%
    characteristic == characteristic$R
    i:Integer * u:%      == (i :: %) * u
    r:R * u:%            == (r :: %) * u
    factors u            == [[fe.fctr, fe.xpnt] for fe in factorList u]
    expand u             == retract u
    negexp? x           == "or"/[negative?(y.xpnt) for y in factorList x]

    makeFR(u, l) ==
-- normalizing code to be installed when contents are handled better
-- current squareFree returns the content as a unit part.
--        if (not unit?(u)) then
--            l := cons(["nil", u, 1]$FF,l)
--            u := 1
        unitNormalize mkFF(u, SimplifyFactorization l)

    if R has IntegerNumberSystem then
      rational? x     == true
      rationalIfCan x == rational x

      rational x ==
        convert(unit x)@Integer *
           _*/[(convert(f.fctr)@Integer)::Fraction(Integer)
                                    ** f.xpnt for f in factorList x]

    if R has Eltable(R, R) then
      elt(x:%, v:%) == x(expand v)

    if R has Evalable(R) then
      eval(x:%, l:List Equation %) ==
        eval(x,[expand lhs e = expand rhs e for e in l]$List(Equation R))

    if R has InnerEvalable(Symbol, R) then
      eval(x:%, ls:List Symbol, lv:List %) ==
        eval(x, ls, [expand v for v in lv]$List(R))

    if R has RealConstant then
  --! negcount and rest commented out since RealConstant doesn't support
  --! positive? or negative?
  --  negcount: % -> Integer
  --  positive?(x:%):Boolean == not(zero? x) and even?(negcount x)
  --  negative?(x:%):Boolean == not(zero? x) and odd?(negcount x)
  --  negcount x ==
  --    n := count(negative?(#1.fctr), factorList x)$List(FF)
  --    negative? unit x => n + 1
  --    n

      convert(x:%):Float ==
        convert(unit x)@Float *
                _*/[convert(f.fctr)@Float ** f.xpnt for f in factorList x]

      convert(x:%):DoubleFloat ==
        convert(unit x)@DoubleFloat *
          _*/[convert(f.fctr)@DoubleFloat ** f.xpnt for f in factorList x]

    u:% * v:% ==
      zero? u or zero? v => 0
      one? u => v
      one? v => u
      mkFF(unit u * unit v,
          SimplifyFactorization concat(factorList u, copy factorList v))

    u:% ** n:NonNegativeInteger ==
      mkFF(unit(u)**n, [[x.flg, x.fctr, n * x.xpnt] for x in factorList u])

    SimplifyFactorization x ==
      empty? x => empty()
      x := sort!(LispLessP, x)
      x := SimplifyFactorization1(first x, rest x)
      x := sort!(LispLessP, x)
      x

    SimplifyFactorization1(f, x) ==
      empty? x =>
        zero?(f.xpnt) => empty()
        list f
      f1 := first x
      f.fctr = f1.fctr =>
        SimplifyFactorization1([stricterFlag(f.flg, f1.flg),
                                      f.fctr, f.xpnt + f1.xpnt], rest x)
      l := SimplifyFactorization1(first x, rest x)
      zero?(f.xpnt) => l
      concat(f, l)


    coerce(x:%):OutputForm ==
      empty?(lf := reverse factorList x) => (unit x)::OutputForm
      l := empty()$List(OutputForm)
      for rec in lf repeat
        ((rec.fctr) = 1) => messagePrint "WARNING (coerce$Factored): 1 should not appear as factor."
        ((rec.xpnt) = 1) =>
          l := concat(rec.fctr :: OutputForm, l)
        l := concat(rec.fctr::OutputForm ** rec.xpnt::OutputForm, l)
      empty? l => (unit x) :: OutputForm
      e :=
        empty? rest l => first l
        reduce(_*, l)
      1 = unit x => e
      (unit x)::OutputForm * e

    retract(u:%):R ==
      negexp? u =>  error "Negative exponent in factored object"
      qexpand u

    qexpand u ==
      unit u *
         _*/[y.fctr ** (y.xpnt::NonNegativeInteger) for y in factorList u]

    retractIfCan(u:%):Union(R, "failed") ==
      negexp? u => "failed"
      qexpand u

    LispLessP(y, y1) ==
      before?(y.fctr, y1.fctr)

    stricterFlag(fl1, fl2) ==
      fl1 case "prime"   => fl1
      fl1 case "irred"   =>
        fl2 case "prime" => fl2
        fl1
      fl1 case "sqfr"    =>
        fl2 case "nil"   => fl1
        fl2
      fl2

    if R has IntegerNumberSystem
      then
        coerce(r:R):% ==
          factor(r)$IntegerFactorizationPackage(R) pretend %
      else
        if R has UniqueFactorizationDomain
          then
            coerce(r:R):% ==
              zero? r => 0
              unit? r => mkFF(r, empty())
              unitNormalize(squareFree(r) pretend %)
          else
            coerce(r:R):% ==
              one? r => 1
              unitNormalize mkFF(1, [["nil", r, 1]$FF])

    u = v ==
      (unit u = unit v) and # u.fct = # v.fct and
        set(factors u)$SRFE =$SRFE set(factors v)$SRFE

    - u ==
      zero? u => u
      mkFF(- unit u, factorList u)

    recip u  ==
      not empty? factorList u => "failed"
      (r := recip unit u) case "failed" => "failed"
      mkFF(r::R, empty())

    reciprocal u ==
      mkFF((recip unit u)::R,
                    [[y.flg, y.fctr, - y.xpnt]$FF for y in factorList u])

    exponent u ==  -- exponent of first factor
      empty?(fl := factorList u) or zero? u => 0
      first(fl).xpnt

    nthExponent(u, i) ==
      l := factorList u
      zero? u or i < 1 or i > #l => 0
      (l.(minIndex(l) + i - 1)).xpnt

    nthFactor(u, i) ==
      zero? u => 0
      zero? i => unit u
      l := factorList u
      negative? i or i > #l => 1
      (l.(minIndex(l) + i - 1)).fctr

    nthFlag(u, i) ==
      l := factorList u
      zero? u or i < 1 or i > #l => "nil"
      (l.(minIndex(l) + i - 1)).flg

    flagFactor(r, i, fl) ==
      zero? i => 1
      zero? r => 0
      unitNormalize mkFF(1, [[fl, r, i]$FF])

    differentiate(u:%, deriv: R -> R) ==
      ans := deriv(unit u) * ((u exquo unit(u)::%)::%)
      ans + (_+/[fact.xpnt * deriv(fact.fctr) *
       ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u])

@

This operation provides an implementation of [[differentiate]] from the
category [[DifferentialExtension]]. It uses the formula 

$$\frac{d}{dx} f(x) = \sum_{i=1}^n \frac{f(x)}{f_i(x)}\frac{d}{dx}f_i(x),$$

where 

$$f(x)=\prod_{i=1}^n f_i(x).$$

Note that up to [[patch--40]] the following wrong definition was used:

\begin{verbatim}
    differentiate(u:%, deriv: R -> R) ==
      ans := deriv(unit u) * ((u exquo (fr := unit(u)::%))::%)
      ans + fr * (_+/[fact.xpnt * deriv(fact.fctr) *
       ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u])
\end{verbatim}

which causes wrong results as soon as units are involved, for example in 

<<TEST FR>>=
  D(factor (-x), x)
@

(Issue~\#176)

<<domain FR Factored>>=
    map(fn, u) ==
     fn(unit u) * _*/[irreducibleFactor(fn(f.fctr),f.xpnt) for f in factorList u]

    u exquo v ==
      empty?(x1 := factorList v) =>  unitNormal(retract v).associate *  u
      empty? factorList u => "failed"
      v1 := u * reciprocal v
      goodQuotient:Boolean := true
      while (goodQuotient and (not empty? x1)) repeat
        if negative? x1.first.xpnt
          then goodQuotient := false
          else x1 := rest x1
      goodQuotient => v1
      "failed"

    unitNormal u == -- does a bunch of work, but more canonical
      (ur := recip(un := unit u)) case "failed" => [1, u, 1]
      as := ur::R
      vl := empty()$List(FF)
      for x in factorList u repeat
        ucar := unitNormal(x.fctr)
        e := abs(x.xpnt)::NonNegativeInteger
        if negative? x.xpnt
          then  --  associate is recip of unit
            un := un * (ucar.associate ** e)
            as := as * (ucar.unit ** e)
          else
            un := un * (ucar.unit ** e)
            as := as * (ucar.associate ** e)
        if not one?(ucar.canonical) then
          vl := concat([x.flg, ucar.canonical, x.xpnt], vl)
      [mkFF(un, empty()), mkFF(1, reverse! vl), mkFF(as, empty())]

    unitNormalize u ==
      uca := unitNormal u
      mkFF(unit(uca.unit)*unit(uca.canonical),factorList(uca.canonical))

    if R has GcdDomain then
      u + v ==
        zero? u => v
        zero? v => u
        v1 := reciprocal(u1 := gcd(u, v))
        (expand(u * v1) + expand(v * v1)) * u1

      gcd(u, v) ==
        one? u or one? v => 1
        zero? u => v
        zero? v => u
        f1 := empty()$List(Integer)  -- list of used factor indices in x
        f2 := f1      -- list of indices corresponding to a given factor
        f3 := empty()$List(List Integer)    -- list of f2-like lists
        x := concat(factorList u, factorList v)
        for i in minIndex x .. maxIndex x repeat
          if not member?(i, f1) then
            f1 := concat(i, f1)
            f2 := [i]
            for j in i+1..maxIndex x repeat
              if x.i.fctr = x.j.fctr then
                  f1 := concat(j, f1)
                  f2 := concat(j, f2)
            f3 := concat(f2, f3)
        x1 := empty()$List(FF)
        while not empty? f3 repeat
          f1 := first f3
          if #f1 > 1 then
            i  := first f1
            y  := copy x.i
            f1 := rest f1
            while not empty? f1 repeat
              i := first f1
              if x.i.xpnt < y.xpnt then y.xpnt := x.i.xpnt
              f1 := rest f1
            x1 := concat(y, x1)
          f3 := rest f3
        x1 := sort!(LispLessP, x1)
        mkFF(1, x1)

    else   -- R not a GCD domain
      u + v ==
        zero? u => v
        zero? v => u
        irreducibleFactor(expand u + expand v, 1)

    if R has UniqueFactorizationDomain then
      prime? u ==
        not(empty?(l := factorList u)) and (empty? rest l) and
                       one?(l.first.xpnt) and (l.first.flg case "prime")

@
\section{package FRUTIL FactoredFunctionUtilities}
<<package FRUTIL FactoredFunctionUtilities>>=
)abbrev package FRUTIL FactoredFunctionUtilities
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations: refine, mergeFactors
++ Related Constructors: Factored
++ Also See:
++ AMS Classifications: 11A51, 11Y05
++ Keywords: factor
++ References:
++ Description:
++   \spadtype{FactoredFunctionUtilities} implements some utility
++   functions for manipulating factored objects.
FactoredFunctionUtilities(R): Exports == Implementation where
  R: IntegralDomain
  FR ==> Factored R

  Exports ==> with
    refine: (FR, R-> FR) -> FR
      ++ refine(u,fn) is used to apply the function \userfun{fn} to
      ++ each factor of \spadvar{u} and then build a new factored
      ++ object from the results.  For example, if \spadvar{u} were
      ++ created by calling \spad{nilFactor(10,2)} then
      ++ \spad{refine(u,factor)} would create a factored object equal
      ++ to that created by \spad{factor(100)} or
      ++ \spad{primeFactor(2,2) * primeFactor(5,2)}.

    mergeFactors: (FR,FR) -> FR
      ++ mergeFactors(u,v) is used when the factorizations of \spadvar{u}
      ++ and \spadvar{v} are known to be disjoint, e.g. resulting from a
      ++ content/primitive part split. Essentially, it creates a new
      ++ factored object by multiplying the units together and appending
      ++ the lists of factors.

  Implementation ==> add
    fg: FR
    func: R -> FR
    fUnion ==> Union("nil", "sqfr", "irred", "prime")
    FF     ==> Record(flg: fUnion, fctr: R, xpnt: Integer)

    mergeFactors(f,g) ==
      makeFR(unit(f)*unit(g),append(factorList f,factorList g))

    refine(f, func) ==
       u := unit(f)
       l: List FF := empty()
       for item in factorList f repeat
         fitem := func item.fctr
         u := u*unit(fitem) ** (item.xpnt :: NonNegativeInteger)
         if item.xpnt = 1 then
            l := concat(factorList fitem,l)
         else l := concat([[v.flg,v.fctr,v.xpnt*item.xpnt]
                          for v in factorList fitem],l)
       makeFR(u,l)

@
\section{package FR2 FactoredFunctions2}
<<package FR2 FactoredFunctions2>>=
)abbrev package FR2 FactoredFunctions2
++ Author: Robert S. Sutor
++ Date Created: 1987
++ Change History:
++ Basic Operations: map
++ Related Constructors: Factored
++ Also See:
++ AMS Classifications: 11A51, 11Y05
++ Keywords: map, factor
++ References:
++ Description:
++   \spadtype{FactoredFunctions2} contains functions that involve
++   factored objects whose underlying domains may not be the same.
++   For example, \spadfun{map} might be used to coerce an object of
++   type \spadtype{Factored(Integer)} to
++   \spadtype{Factored(Complex(Integer))}.
FactoredFunctions2(R, S): Exports == Implementation where
  R: IntegralDomain
  S: IntegralDomain

  Exports ==> with
    map: (R -> S, Factored R) -> Factored S
      ++ map(fn,u) is used to apply the function \userfun{fn} to every
      ++ factor of \spadvar{u}. The new factored object will have all its
      ++ information flags set to "nil". This function is used, for
      ++ example, to coerce every factor base to another type.

  Implementation ==> add
    map(func, f) ==
      func(unit f) *
             _*/[nilFactor(func(g.factor), g.exponent) for g in factors f]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2013, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain FR Factored>>
<<package FRUTIL FactoredFunctionUtilities>>
<<package FR2 FactoredFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}