\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra fparfrac.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain FPARFRAC FullPartialFractionExpansion}
<<domain FPARFRAC FullPartialFractionExpansion>>=
)abbrev domain FPARFRAC FullPartialFractionExpansion
++ Full partial fraction expansion of rational functions
++ Author: Manuel Bronstein
++ Date Created: 9 December 1992
++ Date Last Updated: 6 October 1993
++ References: M.Bronstein & B.Salvy,
++             Full Partial Fraction Decomposition of Rational Functions,
++             in Proceedings of ISSAC'93, Kiev, ACM Press.
FullPartialFractionExpansion(F, UP): Exports == Implementation where
  F  : Join(Field, CharacteristicZero)
  UP : UnivariatePolynomialCategory F

  N   ==> NonNegativeInteger
  Q   ==> Fraction Integer
  O   ==> OutputForm
  RF  ==> Fraction UP
  SUP ==> SparseUnivariatePolynomial RF
  REC ==> Record(exponent: N, center: UP, num: UP)
  ODV ==> OrderlyDifferentialVariable Symbol
  ODP ==> OrderlyDifferentialPolynomial UP
  ODF ==> Fraction ODP
  FPF ==> Record(polyPart: UP, fracPart: List REC)

  Exports ==> Join(SetCategory, ConvertibleTo RF)  with
    +:                 (UP, $) -> $
      ++ p + x returns the sum of p and x
    fullPartialFraction: RF -> $
      ++ fullPartialFraction(f) returns \spad{[p, [[j, Dj, Hj]...]]} such that
      ++ \spad{f = p(x) + \sum_{[j,Dj,Hj] in l} \sum_{Dj(a)=0} Hj(a)/(x - a)\^j}.
    polyPart:            $ -> UP
      ++ polyPart(f) returns the polynomial part of f.
    fracPart:            $  -> List REC
      ++ fracPart(f) returns the list of summands of the fractional part of f.
    construct:           List REC -> $
      ++ construct(l) is the inverse of fracPart.
    differentiate:       $ -> $
      ++ differentiate(f) returns the derivative of f.
    D:                    $ -> $
      ++ D(f) returns the derivative of f.
    differentiate:       ($, N) -> $
      ++ differentiate(f, n) returns the n-th derivative of f.
    D: ($, NonNegativeInteger) -> $
      ++ D(f, n) returns the n-th derivative of f.

  Implementation ==> add
    Rep := FPF

    fullParFrac: (UP, UP, UP, N) -> List REC
    outputexp  : (O, N) -> O
    output     : (N, UP, UP) -> O
    REC2RF     : (UP, UP, N) -> RF
    UP2SUP     : UP -> SUP
    diffrec    : REC -> REC
    FP2O       : List REC -> O

-- create a differential variable
    u  := new()$Symbol
    u0 := makeVariable(u, 0)$ODV
    alpha := u::O
    x  := monomial(1, 1)$UP
    xx := x::O
    zr := (0$N)::O

    construct l     == [0, l]
    D r             == differentiate r
    D(r, n)         == differentiate(r,n)
    polyPart f      == f.polyPart
    fracPart f      == f.fracPart
    p:UP + f:$      == [p + polyPart f, fracPart f]

    differentiate f ==
      differentiate(polyPart f) + construct [diffrec rec for rec in fracPart f]

    differentiate(r, n) ==
      for i in 1..n repeat r := differentiate r
      r

-- diffrec(sum_{rec.center(a) = 0} rec.num(a) / (x - a)^e) =
--         sum_{rec.center(a) = 0} -e rec.num(a) / (x - a)^{e+1}
--                where e = rec.exponent
    diffrec rec ==
      e := rec.exponent
      [e + 1, rec.center, - e * rec.num]

    convert(f:$):RF ==
      ans := polyPart(f)::RF
      for rec in fracPart f repeat
        ans := ans + REC2RF(rec.center, rec.num, rec.exponent)
      ans

    UP2SUP p ==
      map(#1::UP::RF, p)$UnivariatePolynomialCategoryFunctions2(F, UP, RF, SUP)

    -- returns Trace_k^k(a) (h(a) / (x - a)^n)  where d(a) = 0
    REC2RF(d, h, n) ==
      one?(m := degree d) =>
        a   := - (leadingCoefficient reductum d) / (leadingCoefficient d)
        h(a)::UP / (x - a::UP)**n
      dd  := UP2SUP d
      hh  := UP2SUP h
      aa  := monomial(1, 1)$SUP
      p   := (x::RF::SUP - aa)**n rem dd
      rec := extendedEuclidean(p, dd, hh)::Record(coef1:SUP, coef2:SUP)
      t   := rec.coef1     -- we want Trace_k^k(a)(t) now
      ans := coefficient(t, 0)
      for i in 1..degree(d)-1 repeat
        t   := (t * aa) rem dd
        ans := ans + coefficient(t, i)
      ans

    fullPartialFraction f ==
      qr := divide(numer f, d := denom f)
      qr.quotient + construct concat
                     [fullParFrac(qr.remainder, d, rec.factor, rec.exponent::N)
                                         for rec in factors squareFree denom f]

    fullParFrac(a, d, q, n) ==
      ans:List REC := empty()
      em := e := d quo (q ** n)
      rec := extendedEuclidean(e, q, 1)::Record(coef1:UP,coef2:UP)
      bm := b := rec.coef1                  -- b = inverse of e modulo q
      lvar:List(ODV) := [u0]
      um := 1::ODP
      un := (u1 := u0::ODP)**n
      lval:List(UP)  := [q1 := q := differentiate(q0 := q)]
      h:ODF := a::ODP / (e * un)
      rec := extendedEuclidean(q1, q0, 1)::Record(coef1:UP,coef2:UP)
      c := rec.coef1                        -- c = inverse of q' modulo q
      cm := 1::UP
      cn  := (c ** n) rem q0
      for m in 1..n repeat
        p    := retract(em * un * um * h)@ODP
        pp   := retract(eval(p, lvar, lval))@UP
        h    := inv(m::Q) * differentiate h
        q    := differentiate q
        lvar := concat(makeVariable(u, m), lvar)
        lval := concat(inv((m+1)::F) * q, lval)
        qq   := q0 quo gcd(pp, q0)                    -- new center
        if (degree(qq) > 0) then
          ans  := concat([(n + 1 - m)::N, qq, (pp * bm * cn * cm) rem qq], ans)
        cm   := (c * cm) rem q0     -- cm = c**m modulo q now
        um   := u1 * um             -- um = u**m now
        em   := e * em              -- em = e**{m+1} now
        bm   := (b * bm) rem q0     -- bm = b**{m+1} modulo q now
      ans

    coerce(f:$):O ==
      ans := FP2O(l := fracPart f)
      zero?(p := polyPart f) =>
        empty? l => (0$N)::O
        ans
      p::O + ans

    FP2O l ==
      empty? l => empty()
      rec := first l
      ans := output(rec.exponent, rec.center, rec.num)
      for rec in rest l repeat
        ans := ans + output(rec.exponent, rec.center, rec.num)
      ans

    output(n, d, h) ==
      one? degree d =>
        a := - leadingCoefficient(reductum d) / leadingCoefficient(d)
        h(a)::O / outputexp((x - a::UP)::O, n)
      sum(outputForm(makeSUP h, alpha) / outputexp(xx - alpha, n),
          outputForm(makeSUP d, alpha) = zr)

    outputexp(f, n) ==
      one? n => f
      f ** (n::O)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain FPARFRAC FullPartialFractionExpansion>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}