\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra fparfrac.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain FPARFRAC FullPartialFractionExpansion} <<domain FPARFRAC FullPartialFractionExpansion>>= )abbrev domain FPARFRAC FullPartialFractionExpansion ++ Full partial fraction expansion of rational functions ++ Author: Manuel Bronstein ++ Date Created: 9 December 1992 ++ Date Last Updated: 6 October 1993 ++ References: M.Bronstein & B.Salvy, ++ Full Partial Fraction Decomposition of Rational Functions, ++ in Proceedings of ISSAC'93, Kiev, ACM Press. FullPartialFractionExpansion(F, UP): Exports == Implementation where F : Join(Field, CharacteristicZero) UP : UnivariatePolynomialCategory F N ==> NonNegativeInteger Q ==> Fraction Integer O ==> OutputForm RF ==> Fraction UP SUP ==> SparseUnivariatePolynomial RF REC ==> Record(exponent: N, center: UP, num: UP) ODV ==> OrderlyDifferentialVariable Symbol ODP ==> OrderlyDifferentialPolynomial UP ODF ==> Fraction ODP FPF ==> Record(polyPart: UP, fracPart: List REC) Exports ==> Join(SetCategory, ConvertibleTo RF) with "+": (UP, $) -> $ ++ p + x returns the sum of p and x fullPartialFraction: RF -> $ ++ fullPartialFraction(f) returns \spad{[p, [[j, Dj, Hj]...]]} such that ++ \spad{f = p(x) + \sum_{[j,Dj,Hj] in l} \sum_{Dj(a)=0} Hj(a)/(x - a)\^j}. polyPart: $ -> UP ++ polyPart(f) returns the polynomial part of f. fracPart: $ -> List REC ++ fracPart(f) returns the list of summands of the fractional part of f. construct: List REC -> $ ++ construct(l) is the inverse of fracPart. differentiate: $ -> $ ++ differentiate(f) returns the derivative of f. D: $ -> $ ++ D(f) returns the derivative of f. differentiate: ($, N) -> $ ++ differentiate(f, n) returns the n-th derivative of f. D: ($, NonNegativeInteger) -> $ ++ D(f, n) returns the n-th derivative of f. Implementation ==> add Rep := FPF fullParFrac: (UP, UP, UP, N) -> List REC outputexp : (O, N) -> O output : (N, UP, UP) -> O REC2RF : (UP, UP, N) -> RF UP2SUP : UP -> SUP diffrec : REC -> REC FP2O : List REC -> O -- create a differential variable u := new()$Symbol u0 := makeVariable(u, 0)$ODV alpha := u::O x := monomial(1, 1)$UP xx := x::O zr := (0$N)::O construct l == [0, l] D r == differentiate r D(r, n) == differentiate(r,n) polyPart f == f.polyPart fracPart f == f.fracPart p:UP + f:$ == [p + polyPart f, fracPart f] differentiate f == differentiate(polyPart f) + construct [diffrec rec for rec in fracPart f] differentiate(r, n) == for i in 1..n repeat r := differentiate r r -- diffrec(sum_{rec.center(a) = 0} rec.num(a) / (x - a)^e) = -- sum_{rec.center(a) = 0} -e rec.num(a) / (x - a)^{e+1} -- where e = rec.exponent diffrec rec == e := rec.exponent [e + 1, rec.center, - e * rec.num] convert(f:$):RF == ans := polyPart(f)::RF for rec in fracPart f repeat ans := ans + REC2RF(rec.center, rec.num, rec.exponent) ans UP2SUP p == map(#1::UP::RF, p)$UnivariatePolynomialCategoryFunctions2(F, UP, RF, SUP) -- returns Trace_k^k(a) (h(a) / (x - a)^n) where d(a) = 0 REC2RF(d, h, n) == -- one?(m := degree d) => ((m := degree d) = 1) => a := - (leadingCoefficient reductum d) / (leadingCoefficient d) h(a)::UP / (x - a::UP)**n dd := UP2SUP d hh := UP2SUP h aa := monomial(1, 1)$SUP p := (x::RF::SUP - aa)**n rem dd rec := extendedEuclidean(p, dd, hh)::Record(coef1:SUP, coef2:SUP) t := rec.coef1 -- we want Trace_k^k(a)(t) now ans := coefficient(t, 0) for i in 1..degree(d)-1 repeat t := (t * aa) rem dd ans := ans + coefficient(t, i) ans fullPartialFraction f == qr := divide(numer f, d := denom f) qr.quotient + construct concat [fullParFrac(qr.remainder, d, rec.factor, rec.exponent::N) for rec in factors squareFree denom f] fullParFrac(a, d, q, n) == ans:List REC := empty() em := e := d quo (q ** n) rec := extendedEuclidean(e, q, 1)::Record(coef1:UP,coef2:UP) bm := b := rec.coef1 -- b = inverse of e modulo q lvar:List(ODV) := [u0] um := 1::ODP un := (u1 := u0::ODP)**n lval:List(UP) := [q1 := q := differentiate(q0 := q)] h:ODF := a::ODP / (e * un) rec := extendedEuclidean(q1, q0, 1)::Record(coef1:UP,coef2:UP) c := rec.coef1 -- c = inverse of q' modulo q cm := 1::UP cn := (c ** n) rem q0 for m in 1..n repeat p := retract(em * un * um * h)@ODP pp := retract(eval(p, lvar, lval))@UP h := inv(m::Q) * differentiate h q := differentiate q lvar := concat(makeVariable(u, m), lvar) lval := concat(inv((m+1)::F) * q, lval) qq := q0 quo gcd(pp, q0) -- new center if (degree(qq) > 0) then ans := concat([(n + 1 - m)::N, qq, (pp * bm * cn * cm) rem qq], ans) cm := (c * cm) rem q0 -- cm = c**m modulo q now um := u1 * um -- um = u**m now em := e * em -- em = e**{m+1} now bm := (b * bm) rem q0 -- bm = b**{m+1} modulo q now ans coerce(f:$):O == ans := FP2O(l := fracPart f) zero?(p := polyPart f) => empty? l => (0$N)::O ans p::O + ans FP2O l == empty? l => empty() rec := first l ans := output(rec.exponent, rec.center, rec.num) for rec in rest l repeat ans := ans + output(rec.exponent, rec.center, rec.num) ans output(n, d, h) == -- one? degree d => (degree d) = 1 => a := - leadingCoefficient(reductum d) / leadingCoefficient(d) h(a)::O / outputexp((x - a::UP)::O, n) sum(outputForm(makeSUP h, alpha) / outputexp(xx - alpha, n), outputForm(makeSUP d, alpha) = zr) outputexp(f, n) == -- one? n => f (n = 1) => f f ** (n::O) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain FPARFRAC FullPartialFractionExpansion>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}