\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra forttyp.spad} \author{Mike Dewar} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain FST FortranScalarType} <<domain FST FortranScalarType>>= )abbrev domain FST FortranScalarType ++ Author: Mike Dewar ++ Date Created: October 1992 ++ Date Last Updated: ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: Creates and manipulates objects which correspond to the ++ basic FORTRAN data types: REAL, INTEGER, COMPLEX, LOGICAL and CHARACTER FortranScalarType() : exports == implementation where exports == CoercibleTo OutputForm with coerce : String -> $ ++ coerce(s) transforms the string s into an element of ++ FortranScalarType provided s is one of "real", "double precision", ++ "complex", "logical", "integer", "character", "REAL", ++ "COMPLEX", "LOGICAL", "INTEGER", "CHARACTER", ++ "DOUBLE PRECISION" coerce : Symbol -> $ ++ coerce(s) transforms the symbol s into an element of ++ FortranScalarType provided s is one of real, complex,double precision, ++ logical, integer, character, REAL, COMPLEX, LOGICAL, ++ INTEGER, CHARACTER, DOUBLE PRECISION coerce : $ -> Symbol ++ coerce(x) returns the symbol associated with x coerce : $ -> SExpression ++ coerce(x) returns the s-expression associated with x real? : $ -> Boolean ++ real?(t) tests whether t is equivalent to the FORTRAN type REAL. double? : $ -> Boolean ++ double?(t) tests whether t is equivalent to the FORTRAN type ++ DOUBLE PRECISION integer? : $ -> Boolean ++ integer?(t) tests whether t is equivalent to the FORTRAN type INTEGER. complex? : $ -> Boolean ++ complex?(t) tests whether t is equivalent to the FORTRAN type COMPLEX. doubleComplex? : $ -> Boolean ++ doubleComplex?(t) tests whether t is equivalent to the (non-standard) ++ FORTRAN type DOUBLE COMPLEX. character? : $ -> Boolean ++ character?(t) tests whether t is equivalent to the FORTRAN type ++ CHARACTER. logical? : $ -> Boolean ++ logical?(t) tests whether t is equivalent to the FORTRAN type LOGICAL. = : ($,$) -> Boolean ++ x=y tests for equality implementation == add U == Union(RealThing:"real", IntegerThing:"integer", ComplexThing:"complex", CharacterThing:"character", LogicalThing:"logical", DoublePrecisionThing:"double precision", DoubleComplexThing:"double complex") Rep := U doubleSymbol : Symbol := "double precision"::Symbol upperDoubleSymbol : Symbol := "DOUBLE PRECISION"::Symbol doubleComplexSymbol : Symbol := "double complex"::Symbol upperDoubleComplexSymbol : Symbol := "DOUBLE COMPLEX"::Symbol u = v == u case RealThing and v case RealThing => true u case IntegerThing and v case IntegerThing => true u case ComplexThing and v case ComplexThing => true u case LogicalThing and v case LogicalThing => true u case CharacterThing and v case CharacterThing => true u case DoublePrecisionThing and v case DoublePrecisionThing => true u case DoubleComplexThing and v case DoubleComplexThing => true false coerce(t:$):OutputForm == t case RealThing => coerce(REAL)$Symbol t case IntegerThing => coerce(INTEGER)$Symbol t case ComplexThing => coerce(COMPLEX)$Symbol t case CharacterThing => coerce(CHARACTER)$Symbol t case DoublePrecisionThing => coerce(upperDoubleSymbol)$Symbol t case DoubleComplexThing => coerce(upperDoubleComplexSymbol)$Symbol coerce(LOGICAL)$Symbol coerce(t:$):SExpression == t case RealThing => convert(real::Symbol)@SExpression t case IntegerThing => convert(integer::Symbol)@SExpression t case ComplexThing => convert(complex::Symbol)@SExpression t case CharacterThing => convert(character::Symbol)@SExpression t case DoublePrecisionThing => convert(doubleSymbol)@SExpression t case DoubleComplexThing => convert(doubleComplexSymbol)@SExpression convert(logical::Symbol)@SExpression coerce(t:$):Symbol == t case RealThing => real::Symbol t case IntegerThing => integer::Symbol t case ComplexThing => complex::Symbol t case CharacterThing => character::Symbol t case DoublePrecisionThing => doubleSymbol t case DoublePrecisionThing => doubleComplexSymbol logical::Symbol coerce(s:Symbol):$ == s = real => ["real"]$Rep s = REAL => ["real"]$Rep s = integer => ["integer"]$Rep s = INTEGER => ["integer"]$Rep s = complex => ["complex"]$Rep s = COMPLEX => ["complex"]$Rep s = character => ["character"]$Rep s = CHARACTER => ["character"]$Rep s = logical => ["logical"]$Rep s = LOGICAL => ["logical"]$Rep s = doubleSymbol => ["double precision"]$Rep s = upperDoubleSymbol => ["double precision"]$Rep s = doubleComplexSymbol => ["double complex"]$Rep s = upperDoubleCOmplexSymbol => ["double complex"]$Rep error concat([string s," is invalid as a Fortran Type"])$String coerce(s:String):$ == s = "real" => ["real"]$Rep s = "integer" => ["integer"]$Rep s = "complex" => ["complex"]$Rep s = "character" => ["character"]$Rep s = "logical" => ["logical"]$Rep s = "double precision" => ["double precision"]$Rep s = "double complex" => ["double complex"]$Rep s = "REAL" => ["real"]$Rep s = "INTEGER" => ["integer"]$Rep s = "COMPLEX" => ["complex"]$Rep s = "CHARACTER" => ["character"]$Rep s = "LOGICAL" => ["logical"]$Rep s = "DOUBLE PRECISION" => ["double precision"]$Rep s = "DOUBLE COMPLEX" => ["double complex"]$Rep error concat([s," is invalid as a Fortran Type"])$String real?(t:$):Boolean == t case RealThing double?(t:$):Boolean == t case DoublePrecisionThing logical?(t:$):Boolean == t case LogicalThing integer?(t:$):Boolean == t case IntegerThing character?(t:$):Boolean == t case CharacterThing complex?(t:$):Boolean == t case ComplexThing doubleComplex?(t:$):Boolean == t case DoubleComplexThing @ \section{domain FT FortranType} <<domain FT FortranType>>= )abbrev domain FT FortranType ++ Author: Mike Dewar ++ Date Created: October 1992 ++ Date Last Updated: ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: Creates and manipulates objects which correspond to FORTRAN ++ data types, including array dimensions. FortranType() : exports == implementation where FST ==> FortranScalarType FSTU ==> Union(fst:FST,void:"void") exports == SetCategory with coerce : FST -> $ ++ coerce(t) creates an element from a scalar type scalarTypeOf : $ -> FSTU ++ scalarTypeOf(t) returns the FORTRAN data type of t dimensionsOf : $ -> List Polynomial Integer ++ dimensionsOf(t) returns the dimensions of t external? : $ -> Boolean ++ external?(u) returns true if u is declared to be EXTERNAL construct : (FSTU,List Symbol,Boolean) -> $ ++ construct(type,dims) creates an element of FortranType construct : (FSTU,List Polynomial Integer,Boolean) -> $ ++ construct(type,dims) creates an element of FortranType fortranReal : () -> $ ++ fortranReal() returns REAL, an element of FortranType fortranDouble : () -> $ ++ fortranDouble() returns DOUBLE PRECISION, an element of FortranType fortranInteger : () -> $ ++ fortranInteger() returns INTEGER, an element of FortranType fortranLogical : () -> $ ++ fortranLogical() returns LOGICAL, an element of FortranType fortranComplex : () -> $ ++ fortranComplex() returns COMPLEX, an element of FortranType fortranDoubleComplex: () -> $ ++ fortranDoubleComplex() returns DOUBLE COMPLEX, an element of ++ FortranType fortranCharacter : () -> $ ++ fortranCharacter() returns CHARACTER, an element of FortranType implementation == add Dims == List Polynomial Integer Rep := Record(type : FSTU, dimensions : Dims, external : Boolean) coerce(a:$):OutputForm == t : OutputForm if external?(a) then if scalarTypeOf(a) case void then t := "EXTERNAL"::OutputForm else t := blankSeparate(["EXTERNAL"::OutputForm, coerce(scalarTypeOf a)$FSTU])$OutputForm else t := coerce(scalarTypeOf a)$FSTU empty? dimensionsOf(a) => t sub(t, paren([u::OutputForm for u in dimensionsOf(a)])$OutputForm)$OutputForm scalarTypeOf(u:$):FSTU == u.type dimensionsOf(u:$):Dims == u.dimensions external?(u:$):Boolean == u.external construct(t:FSTU, d:List Symbol, e:Boolean):$ == e and not empty? d => error "EXTERNAL objects cannot have dimensions" not(e) and t case void => error "VOID objects must be EXTERNAL" construct(t,[l::Polynomial(Integer) for l in d],e)$Rep construct(t:FSTU, d:List Polynomial Integer, e:Boolean):$ == e and not empty? d => error "EXTERNAL objects cannot have dimensions" not(e) and t case void => error "VOID objects must be EXTERNAL" construct(t,d,e)$Rep coerce(u:FST):$ == construct([u]$FSTU,[]@List Polynomial Integer,false) fortranReal():$ == ("real"::FST)::$ fortranDouble():$ == ("double precision"::FST)::$ fortranInteger():$ == ("integer"::FST)::$ fortranComplex():$ == ("complex"::FST)::$ fortranDoubleComplex():$ == ("double complex"::FST)::$ fortranCharacter():$ == ("character"::FST)::$ fortranLogical():$ == ("logical"::FST)::$ @ \section{domain SYMTAB SymbolTable} <<domain SYMTAB SymbolTable>>= )abbrev domain SYMTAB SymbolTable ++ Author: Mike Dewar ++ Date Created: October 1992 ++ Date Last Updated: 12 July 1994 ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: Create and manipulate a symbol table for generated FORTRAN code SymbolTable() : exports == implementation where T ==> Union(S:Symbol,P:Polynomial Integer) TL1 ==> List T TU ==> Union(name:Symbol,bounds:TL1) TL ==> List TU SEX ==> SExpression OFORM ==> OutputForm L ==> List FSTU ==> Union(fst:FortranScalarType,void:"void") exports ==> CoercibleTo OutputForm with coerce : $ -> Table(Symbol,FortranType) ++ coerce(x) returns a table view of x empty : () -> $ ++ empty() returns a new, empty symbol table declare! : (L Symbol,FortranType,$) -> FortranType ++ declare!(l,t,tab) creates new entrys in tab, declaring each of l ++ to be of type t declare! : (Symbol,FortranType,$) -> FortranType ++ declare!(u,t,tab) creates a new entry in tab, declaring u to be of ++ type t fortranTypeOf : (Symbol,$) -> FortranType ++ fortranTypeOf(u,tab) returns the type of u in tab parametersOf: $ -> L Symbol ++ parametersOf(tab) returns a list of all the symbols declared in tab typeList : (FortranScalarType,$) -> TL ++ typeList(t,tab) returns a list of all the objects of type t in tab externalList : $ -> L Symbol ++ externalList(tab) returns a list of all the external symbols in tab typeLists : $ -> L TL ++ typeLists(tab) returns a list of lists of types of objects in tab newTypeLists : $ -> SEX ++ newTypeLists(x) \undocumented printTypes: $ -> Void ++ printTypes(tab) produces FORTRAN type declarations from tab, on the ++ current FORTRAN output stream symbolTable: L Record(key:Symbol,entry:FortranType) -> $ ++ symbolTable(l) creates a symbol table from the elements of l. implementation ==> add Rep := Table(Symbol,FortranType) coerce(t:$):OFORM == coerce(t)$Rep coerce(t:$):Table(Symbol,FortranType) == t pretend Table(Symbol,FortranType) symbolTable(l:L Record(key:Symbol,entry:FortranType)):$ == table(l)$Rep empty():$ == empty()$Rep parametersOf(tab:$):L(Symbol) == keys(tab) declare!(name:Symbol,type:FortranType,tab:$):FortranType == setelt(tab,name,type)$Rep type declare!(names:L Symbol,type:FortranType,tab:$):FortranType == for name in names repeat setelt(tab,name,type)$Rep type fortranTypeOf(u:Symbol,tab:$):FortranType == elt(tab,u)$Rep externalList(tab:$):L(Symbol) == [u for u in keys(tab) | external? fortranTypeOf(u,tab)] typeList(type:FortranScalarType,tab:$):TL == scalarList := []@TL arrayList := []@TL for u in keys(tab)$Rep repeat uType : FortranType := fortranTypeOf(u,tab) sType : FSTU := scalarTypeOf(uType) if (sType case fst and (sType.fst)=type) then uDim : TL1 := [[v]$T for v in dimensionsOf(uType)] if empty? uDim then scalarList := cons([u]$TU,scalarList) else arrayList := cons([cons([u],uDim)$TL1]$TU,arrayList) -- Scalars come first in case they are integers which are later -- used as an array dimension. append(scalarList,arrayList) typeList2(type:FortranScalarType,tab:$):TL == tl := []@TL symbolType : Symbol := coerce(type)$FortranScalarType for u in keys(tab)$Rep repeat uType : FortranType := fortranTypeOf(u,tab) sType : FSTU := scalarTypeOf(uType) if (sType case fst and (sType.fst)=type) then uDim : TL1 := [[v]$T for v in dimensionsOf(uType)] tl := if empty? uDim then cons([u]$TU,tl) else cons([cons([u],uDim)$TL1]$TU,tl) empty? tl => tl cons([symbolType]$TU,tl) updateList(sType:SEX,name:SEX,lDims:SEX,tl:SEX):SEX == l : SEX := ASSOC(sType,tl)$Lisp entry : SEX := if null?(lDims) then name else CONS(name,lDims)$Lisp null?(l) => CONS([sType,entry]$Lisp,tl)$Lisp RPLACD(l,CONS(entry,cdr l)$Lisp)$Lisp tl newTypeLists(tab:$):SEX == tl := []$Lisp for u in keys(tab)$Rep repeat uType : FortranType := fortranTypeOf(u,tab) sType : FSTU := scalarTypeOf(uType) dims : L Polynomial Integer := dimensionsOf uType lDims : L SEX := [convert(convert(v)@InputForm)@SEX for v in dims] lType : SEX := if sType case void then convert(void::Symbol)@SEX else coerce(sType.fst)$FortranScalarType tl := updateList(lType,convert(u)@SEX,convert(lDims)@SEX,tl) tl typeLists(tab:$):L(TL) == fortranTypes := ["real"::FortranScalarType, _ "double precision"::FortranScalarType, _ "integer"::FortranScalarType, _ "complex"::FortranScalarType, _ "logical"::FortranScalarType, _ "character"::FortranScalarType]@L(FortranScalarType) tl := []@L TL for u in fortranTypes repeat types : TL := typeList2(u,tab) if (not null types) then tl := cons(types,tl)$(L TL) tl oForm2(w:T):OFORM == w case S => w.S::OFORM w case P => w.P::OFORM oForm(v:TU):OFORM == v case name => v.name::OFORM v case bounds => ll : L OFORM := [oForm2(uu) for uu in v.bounds] ll :: OFORM outForm(t:TL):L OFORM == [oForm(u) for u in t] printTypes(tab:$):Void == -- It is important that INTEGER is the first element of this -- list since INTEGER symbols used in type declarations must -- be declared in advance. ft := ["integer"::FortranScalarType, _ "real"::FortranScalarType, _ "double precision"::FortranScalarType, _ "complex"::FortranScalarType, _ "logical"::FortranScalarType, _ "character"::FortranScalarType]@L(FortranScalarType) for ty in ft repeat tl : TL := typeList(ty,tab) otl : L OFORM := outForm(tl) fortFormatTypes(ty::OFORM,otl)$Lisp el : L OFORM := [u::OFORM for u in externalList(tab)] fortFormatTypes("EXTERNAL"::OFORM,el)$Lisp @ \section{domain SYMS TheSymbolTable} <<domain SYMS TheSymbolTable>>= )abbrev domain SYMS TheSymbolTable ++ Author: Mike Dewar ++ Date Created: October 1992 ++ Date Last Updated: ++ Basic Operations: ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: Creates and manipulates one global symbol table for FORTRAN ++ code generation, containing details of types, dimensions, and argument ++ lists. TheSymbolTable() : Exports == Implementation where S ==> Symbol FST ==> FortranScalarType FSTU ==> Union(fst:FST,void:"void") Exports == CoercibleTo OutputForm with showTheSymbolTable : () -> $ ++ showTheSymbolTable() returns the current symbol table. clearTheSymbolTable : () -> Void ++ clearTheSymbolTable() clears the current symbol table. clearTheSymbolTable : Symbol -> Void ++ clearTheSymbolTable(x) removes the symbol x from the table declare! : (Symbol,FortranType,Symbol,$) -> FortranType ++ declare!(u,t,asp,tab) declares the parameter u of subprogram asp ++ to have type t in symbol table tab. declare! : (List Symbol,FortranType,Symbol,$) -> FortranType ++ declare!(u,t,asp,tab) declares the parameters u of subprogram asp ++ to have type t in symbol table tab. declare! : (Symbol,FortranType) -> FortranType ++ declare!(u,t) declares the parameter u to have type t in the ++ current level of the symbol table. declare! : (Symbol,FortranType,Symbol) -> FortranType ++ declare!(u,t,asp) declares the parameter u to have type t in asp. newSubProgram : Symbol -> Void ++ newSubProgram(f) asserts that from now on type declarations are part ++ of subprogram f. currentSubProgram : () -> Symbol ++ currentSubProgram() returns the name of the current subprogram being ++ processed endSubProgram : () -> Symbol ++ endSubProgram() asserts that we are no longer processing the current ++ subprogram. argumentList! : (Symbol,List Symbol,$) -> Void ++ argumentList!(f,l,tab) declares that the argument list for subprogram f ++ in symbol table tab is l. argumentList! : (Symbol,List Symbol) -> Void ++ argumentList!(f,l) declares that the argument list for subprogram f in ++ the global symbol table is l. argumentList! : List Symbol -> Void ++ argumentList!(l) declares that the argument list for the current ++ subprogram in the global symbol table is l. returnType! : (Symbol,FSTU,$) -> Void ++ returnType!(f,t,tab) declares that the return type of subprogram f in ++ symbol table tab is t. returnType! : (Symbol,FSTU) -> Void ++ returnType!(f,t) declares that the return type of subprogram f in ++ the global symbol table is t. returnType! : FSTU -> Void ++ returnType!(t) declares that the return type of he current subprogram ++ in the global symbol table is t. printHeader : (Symbol,$) -> Void ++ printHeader(f,tab) produces the FORTRAN header for subprogram f in ++ symbol table tab on the current FORTRAN output stream. printHeader : Symbol -> Void ++ printHeader(f) produces the FORTRAN header for subprogram f in ++ the global symbol table on the current FORTRAN output stream. printHeader : () -> Void ++ printHeader() produces the FORTRAN header for the current subprogram in ++ the global symbol table on the current FORTRAN output stream. printTypes: Symbol -> Void ++ printTypes(tab) produces FORTRAN type declarations from tab, on the ++ current FORTRAN output stream empty : () -> $ ++ empty() creates a new, empty symbol table. returnTypeOf : (Symbol,$) -> FSTU ++ returnTypeOf(f,tab) returns the type of the object returned by f argumentListOf : (Symbol,$) -> List(Symbol) ++ argumentListOf(f,tab) returns the argument list of f symbolTableOf : (Symbol,$) -> SymbolTable ++ symbolTableOf(f,tab) returns the symbol table of f Implementation == add Entry : Domain := Record(symtab:SymbolTable, _ returnType:FSTU, _ argList:List Symbol) Rep := Table(Symbol,Entry) -- These are the global variables we want to update: theSymbolTable : $ := empty()$Rep currentSubProgramName : Symbol := MAIN newEntry():Entry == construct(empty()$SymbolTable,["void"]$FSTU,[]::List(Symbol))$Entry checkIfEntryExists(name:Symbol,tab:$) : Void == key?(name,tab) => void()$Void setelt(tab,name,newEntry())$Rep returnTypeOf(name:Symbol,tab:$):FSTU == elt(elt(tab,name)$Rep,returnType)$Entry argumentListOf(name:Symbol,tab:$):List(Symbol) == elt(elt(tab,name)$Rep,argList)$Entry symbolTableOf(name:Symbol,tab:$):SymbolTable == elt(elt(tab,name)$Rep,symtab)$Entry coerce(u:$):OutputForm == coerce(u)$Rep showTheSymbolTable():$ == theSymbolTable clearTheSymbolTable():Void == theSymbolTable := empty()$Rep clearTheSymbolTable(u:Symbol):Void == remove!(u,theSymbolTable)$Rep empty():$ == empty()$Rep currentSubProgram():Symbol == currentSubProgramName endSubProgram():Symbol == -- If we want to support more complex languages then we should keep -- a list of subprograms / blocks - but for the moment lets stick with -- Fortran. currentSubProgramName := MAIN newSubProgram(u:Symbol):Void == setelt(theSymbolTable,u,newEntry())$Rep currentSubProgramName := u argumentList!(u:Symbol,args:List Symbol,symbols:$):Void == checkIfEntryExists(u,symbols) setelt(elt(symbols,u)$Rep,argList,args)$Entry argumentList!(u:Symbol,args:List Symbol):Void == argumentList!(u,args,theSymbolTable) argumentList!(args:List Symbol):Void == checkIfEntryExists(currentSubProgramName,theSymbolTable) setelt(elt(theSymbolTable,currentSubProgramName)$Rep, _ argList,args)$Entry returnType!(u:Symbol,type:FSTU,symbols:$):Void == checkIfEntryExists(u,symbols) setelt(elt(symbols,u)$Rep,returnType,type)$Entry returnType!(u:Symbol,type:FSTU):Void == returnType!(u,type,theSymbolTable) returnType!(type:FSTU ):Void == checkIfEntryExists(currentSubProgramName,theSymbolTable) setelt(elt(theSymbolTable,currentSubProgramName)$Rep, _ returnType,type)$Entry declare!(u:Symbol,type:FortranType):FortranType == declare!(u,type,currentSubProgramName,theSymbolTable) declare!(u:Symbol,type:FortranType,asp:Symbol,symbols:$):FortranType == checkIfEntryExists(asp,symbols) declare!(u,type, elt(elt(symbols,asp)$Rep,symtab)$Entry)$SymbolTable declare!(u:List Symbol,type:FortranType,asp:Symbol,syms:$):FortranType == checkIfEntryExists(asp,syms) declare!(u,type, elt(elt(syms,asp)$Rep,symtab)$Entry)$SymbolTable declare!(u:Symbol,type:FortranType,asp:Symbol):FortranType == checkIfEntryExists(asp,theSymbolTable) declare!(u,type,elt(elt(theSymbolTable,asp)$Rep,symtab)$Entry)$SymbolTable printHeader(u:Symbol,symbols:$):Void == entry := elt(symbols,u)$Rep fortFormatHead(elt(entry,returnType)$Entry::OutputForm,u::OutputForm, _ elt(entry,argList)$Entry::OutputForm)$Lisp printTypes(elt(entry,symtab)$Entry)$SymbolTable printHeader(u:Symbol):Void == printHeader(u,theSymbolTable) printHeader():Void == printHeader(currentSubProgramName,theSymbolTable) printTypes(u:Symbol):Void == printTypes(elt(elt(theSymbolTable,u)$Rep,symtab)$Entry)$SymbolTable @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain FST FortranScalarType>> <<domain FT FortranType>> <<domain SYMTAB SymbolTable>> <<domain SYMS TheSymbolTable>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}