\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra fortmac.spad} \author{Mike Dewar} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain MINT MachineInteger} <<domain MINT MachineInteger>>= )abbrev domain MINT MachineInteger ++ Author: Mike Dewar ++ Date Created: December 1993 ++ Date Last Updated: ++ Basic Operations: ++ Related Domains: ++ Also See: FortranExpression, FortranMachineTypeCategory, MachineFloat, ++ MachineComplex ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: A domain which models the integer representation ++ used by machines in the AXIOM-NAG link. MachineInteger(): Exports == Implementation where S ==> String Exports ==> Join(FortranMachineTypeCategory,IntegerNumberSystem) with maxint : PositiveInteger -> PositiveInteger ++ maxint(u) sets the maximum integer in the model to u maxint : () -> PositiveInteger ++ maxint() returns the maximum integer in the model coerce : Expression Integer -> Expression $ ++ coerce(x) returns x with coefficients in the domain Implementation ==> Integer add MAXINT : PositiveInteger := 2**32 maxint():PositiveInteger == MAXINT maxint(new:PositiveInteger):PositiveInteger == old := MAXINT MAXINT := new old coerce(u:Expression Integer):Expression($) == map(coerce,u)$ExpressionFunctions2(Integer,$) coerce(u:Integer):$ == import S abs(u) > MAXINT => message: S := concat [convert(u)@S," > MAXINT(",convert(MAXINT)@S,")"] error message per u retract(u:$):Integer == rep u retractIfCan(u:$):Union(Integer,"failed") == rep u @ \section{domain MFLOAT MachineFloat} <<domain MFLOAT MachineFloat>>= )abbrev domain MFLOAT MachineFloat ++ Author: Mike Dewar ++ Date Created: December 1993 ++ Date Last Updated: ++ Basic Operations: ++ Related Domains: ++ Also See: FortranExpression, FortranMachineTypeCategory, MachineInteger, ++ MachineComplex ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: A domain which models the floating point representation ++ used by machines in the AXIOM-NAG link. MachineFloat(): Exports == Implementation where PI ==> PositiveInteger NNI ==> NonNegativeInteger F ==> Float I ==> Integer S ==> String FI ==> Fraction Integer SUP ==> SparseUnivariatePolynomial SF ==> DoubleFloat Exports ==> Join(FloatingPointSystem,FortranMachineTypeCategory,Field, RetractableTo(Float),RetractableTo(Fraction(Integer)),CharacteristicZero) with precision : PI -> PI ++ precision(p) sets the number of digits in the model to p precision : () -> PI ++ precision() returns the number of digits in the model base : PI -> PI ++ base(b) sets the base of the model to b maximumExponent : I -> I ++ maximumExponent(e) sets the maximum exponent in the model to e maximumExponent : () -> I ++ maximumExponent() returns the maximum exponent in the model minimumExponent : I -> I ++ minimumExponent(e) sets the minimum exponent in the model to e minimumExponent : () -> I ++ minimumExponent() returns the minimum exponent in the model coerce : $ -> F ++ coerce(u) transforms a MachineFloat to a standard Float coerce : MachineInteger -> $ ++ coerce(u) transforms a MachineInteger into a MachineFloat mantissa : $ -> I ++ mantissa(u) returns the mantissa of u exponent : $ -> I ++ exponent(u) returns the exponent of u changeBase : (I,I,PI) -> $ ++ changeBase(exp,man,base) \undocumented{} Implementation ==> add import F import FI Rep := Record(mantissa:I,exponent:I) -- Parameters of the Floating Point Representation P : PI := 16 -- Precision B : PI := 2 -- Base EMIN : I := -1021 -- Minimum Exponent EMAX : I := 1024 -- Maximum Exponent -- Useful constants POWER : PI := 53 -- The maximum power of B which will yield P -- decimal digits. MMAX : PI := B**POWER -- locals locRound:(FI)->I checkExponent:($)->$ normalise:($)->$ newPower:(PI,PI)->Void retractIfCan(u:$):Union(FI,"failed") == mantissa(u)*(B/1)**(exponent(u)) wholePart(u:$):Integer == man:I:=mantissa u exp:I:=exponent u f:= positive? exp => man*B**(exp pretend PI) zero? exp => man wholePart(man/B**((-exp) pretend PI)) normalise(u:$):$ == -- We want the largest possible mantissa, to ensure a canonical -- representation. exp : I := exponent u man : I := mantissa u BB : I := B pretend I sgn : I := sign man ; man := abs man zero? man => [0,0]$Rep if man < MMAX then while man < MMAX repeat exp := exp - 1 man := man * BB if man > MMAX then q1:FI:= man/1 BBF:FI:=BB/1 while wholePart(q1) > MMAX repeat q1:= q1 / BBF exp:=exp + 1 man := locRound(q1) positive?(sgn) => checkExponent [man,exp]$Rep checkExponent [-man,exp]$Rep mantissa(u:$):I == elt(u,mantissa)$Rep exponent(u:$):I == elt(u,exponent)$Rep newPower(base:PI,prec:PI):Void == power : PI := 1 target : PI := 10**prec current : PI := base while (current := current*base) < target repeat power := power+1 POWER := power MMAX := B**POWER changeBase(exp:I,man:I,base:PI):$ == newExp : I := 0 f : FI := man*(base pretend I)::FI**exp sign : I := sign f f : FI := abs f newMan : I := wholePart f zero? f => [0,0]$Rep BB : FI := (B pretend I)::FI if newMan < MMAX then while newMan < MMAX repeat newExp := newExp - 1 f := f*BB newMan := wholePart f if newMan > MMAX then while newMan > MMAX repeat newExp := newExp + 1 f := f/BB newMan := wholePart f [sign*newMan,newExp]$Rep checkExponent(u:$):$ == exponent(u) < EMIN or exponent(u) > EMAX => message :S := concat(["Exponent out of range: ", convert(EMIN)@S, "..", convert(EMAX)@S])$S error message u coerce(u:$):OutputForm == coerce(u::F) coerce(u:MachineInteger):$ == checkExponent changeBase(0,retract(u)@Integer,10) coerce(u:$):F == oldDigits : PI := digits(P)$F r : F := float(mantissa u,exponent u,B)$Float digits(oldDigits)$F r coerce(u:F):$ == checkExponent changeBase(exponent(u)$F,mantissa(u)$F,base()$F) coerce(u:I):$ == checkExponent changeBase(0,u,10) coerce(u:FI):$ == (numer u)::$/(denom u)::$ retract(u:$):FI == value : Union(FI,"failed") := retractIfCan(u) value case "failed" => error "Cannot retract to a Fraction Integer" value::FI retract(u:$):F == u::F retractIfCan(u:$):Union(F,"failed") == u::F::Union(F,"failed") retractIfCan(u:$):Union(I,"failed") == value:FI := mantissa(u)*(B pretend I)::FI**exponent(u) zero? fractionPart(value) => wholePart(value)::Union(I,"failed") "failed"::Union(I,"failed") retract(u:$):I == result : Union(I,"failed") := retractIfCan u result = "failed" => error "Not an Integer" result::I precision(p: PI):PI == old : PI := P newPower(B,p) P := p old precision():PI == P base(b:PI):PI == old : PI := b newPower(b,P) B := b old base():PI == B maximumExponent(u:I):I == old : I := EMAX EMAX := u old maximumExponent():I == EMAX minimumExponent(u:I):I == old : I := EMIN EMIN := u old minimumExponent():I == EMIN 0 == [0,0]$Rep 1 == changeBase(0,1,10) zero?(u:$):Boolean == u=[0,0]$Rep f1:$ f2:$ locRound(x:FI):I == abs(fractionPart(x)) >= 1/2 => wholePart(x)+sign(x) wholePart(x) recip f1 == zero? f1 => "failed" normalise [ locRound(B**(2*POWER)/mantissa f1),-(exponent f1 + 2*POWER)] f1 * f2 == normalise [mantissa(f1)*mantissa(f2),exponent(f1)+exponent(f2)]$Rep f1 **(p:FI) == ((f1::F)**p)::% --inline f1 / f2 == zero? f2 => error "division by zero" zero? f1 => 0 f1=f2 => 1 normalise [locRound(mantissa(f1)*B**(2*POWER)/mantissa(f2)), exponent(f1)-(exponent f2 + 2*POWER)] inv(f1) == 1/f1 f1 exquo f2 == f1/f2 divide(f1,f2) == [ f1/f2,0] f1 quo f2 == f1/f2 f1 rem f2 == 0 u:I * f1 == normalise [u*mantissa(f1),exponent(f1)]$Rep f1 = f2 == mantissa(f1)=mantissa(f2) and exponent(f1)=exponent(f2) f1 + f2 == m1 : I := mantissa f1 m2 : I := mantissa f2 e1 : I := exponent f1 e2 : I := exponent f2 e1 > e2 => --insignificance e1 > e2 + POWER + 2 => zero? f1 => f2 f1 normalise [m1*(B pretend I)**((e1-e2) pretend NNI)+m2,e2]$Rep e2 > e1 + POWER +2 => zero? f2 => f1 f2 normalise [m2*(B pretend I)**((e2-e1) pretend NNI)+m1,e1]$Rep - f1 == [- mantissa f1,exponent f1]$Rep f1 - f2 == f1 + (-f2) f1 < f2 == m1 : I := mantissa f1 m2 : I := mantissa f2 e1 : I := exponent f1 e2 : I := exponent f2 sign(m1) = sign(m2) => e1 < e2 => true e1 = e2 and m1 < m2 => true false sign(m1) = 1 => false sign(m1) = 0 and sign(m2) = -1 => false true characteristic:NNI == 0 @ \section{domain MCMPLX MachineComplex} <<domain MCMPLX MachineComplex>>= )abbrev domain MCMPLX MachineComplex ++ Date Created: December 1993 ++ Date Last Updated: ++ Basic Operations: ++ Related Domains: ++ Also See: FortranExpression, FortranMachineTypeCategory, MachineInteger, ++ MachineFloat ++ AMS Classifications: ++ Keywords: ++ Examples: ++ References: ++ Description: A domain which models the complex number representation ++ used by machines in the AXIOM-NAG link. MachineComplex():Exports == Implementation where Exports ==> Join (FortranMachineTypeCategory, ComplexCategory(MachineFloat)) with coerce : Complex Float -> $ ++ coerce(u) transforms u into a MachineComplex coerce : Complex Integer -> $ ++ coerce(u) transforms u into a MachineComplex coerce : Complex MachineFloat -> $ ++ coerce(u) transforms u into a MachineComplex coerce : Complex MachineInteger -> $ ++ coerce(u) transforms u into a MachineComplex coerce : $ -> Complex Float ++ coerce(u) transforms u into a COmplex Float Implementation ==> Complex MachineFloat add coerce(u:Complex Float):$ == complex(real(u)::MachineFloat,imag(u)::MachineFloat) coerce(u:Complex Integer):$ == complex(real(u)::MachineFloat,imag(u)::MachineFloat) coerce(u:Complex MachineInteger):$ == complex(real(u)::MachineFloat,imag(u)::MachineFloat) coerce(u:Complex MachineFloat):$ == complex(real(u),imag(u)) coerce(u:$):Complex Float == complex(real(u)::Float,imag(u)::Float) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain MINT MachineInteger>> <<domain MFLOAT MachineFloat>> <<domain MCMPLX MachineComplex>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}