\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra fnla.spad} \author{Larry Lambe} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain OSI OrdSetInts} <<domain OSI OrdSetInts>>= )abbrev domain OSI OrdSetInts ++ Author : Larry Lambe ++ Date created : 14 August 1988 ++ Date Last Updated : 11 March 1991 ++ Description : A domain used in order to take the free R-module on the ++ Integers I. This is actually the forgetful functor from OrderedRings ++ to OrderedSets applied to I OrdSetInts: Export == Implement where I ==> Integer L ==> List O ==> OutputForm Export == OrderedSet with coerce : Integer -> % ++ coerce(i) returns the element corresponding to i value : % -> I ++ value(x) returns the integer associated with x Implement == add Rep := Integer x,y: % x = y == x =$Rep y x < y == x <$Rep y coerce(i:Integer):% == i value(x) == x:Rep coerce(x):O == sub(e::Symbol::O, coerce(x)$Rep)$O @ \section{domain COMM Commutator} <<domain COMM Commutator>>= )abbrev domain COMM Commutator ++ Author : Larry Lambe ++ Date created: 30 June 1988. ++ Updated : 10 March 1991 ++ Description: A type for basic commutators Commutator: Export == Implement where I ==> Integer OSI ==> OrdSetInts O ==> OutputForm Export == SetCategory with mkcomm : I -> % ++ mkcomm(i) \undocumented{} mkcomm : (%,%) -> % ++ mkcomm(i,j) \undocumented{} Implement == add import OSI P := Record(left:%,right:%) Rep := Union(OSI,P) x,y: % i : I x = y == (x case OSI) and (y case OSI) => x::OSI = y::OSI (x case P) and (y case P) => xx:P := x::P yy:P := y::P (xx.right = yy.right) and (xx.left = yy.left) false mkcomm(i) == i::OSI mkcomm(x,y) == construct(x,y)$P coerce(x: %): O == x case OSI => x::OSI::O xx := x::P bracket([xx.left::O,xx.right::O])$O @ \section{package HB HallBasis} <<package HB HallBasis>>= )abbrev package HB HallBasis ++ Author : Larry Lambe ++ Date Created : August 1988 ++ Date Last Updated : March 9 1990 ++ Related Constructors: OrderedSetInts, Commutator, FreeNilpotentLie ++ AMS Classification: Primary 17B05, 17B30; Secondary 17A50 ++ Keywords: free Lie algebra, Hall basis, basic commutators ++ Description : Generate a basis for the free Lie algebra on n ++ generators over a ring R with identity up to basic commutators ++ of length c using the algorithm of P. Hall as given in Serre's ++ book Lie Groups -- Lie Algebras HallBasis() : Export == Implement where B ==> Boolean I ==> Integer NNI ==> NonNegativeInteger VI ==> Vector Integer VLI ==> Vector List Integer Export ==> with lfunc : (I,I) -> I ++ lfunc(d,n) computes the rank of the nth factor in the ++ lower central series of the free d-generated free Lie ++ algebra; This rank is d if n = 1 and binom(d,2) if ++ n = 2 inHallBasis? : (I,I,I,I) -> B ++ inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left) ++ tests to see if a new element should be added to the P. Hall ++ basis being constructed. ++ The list \spad{[leftCandidate,wt,rightCandidate]} ++ is included in the basis if in the unique factorization of ++ rightCandidate, we have left factor leftOfRight, and ++ leftOfRight <= leftCandidate generate : (NNI,NNI) -> VLI ++ generate(numberOfGens, maximalWeight) generates a vector of ++ elements of the form [left,weight,right] which represents a ++ P. Hall basis element for the free lie algebra on numberOfGens ++ generators. We only generate those basis elements of weight ++ less than or equal to maximalWeight Implement ==> add lfunc(d,n) == negative? n => 0 n = 0 => 1 n = 1 => d sum:I := 0 for m in 1..(n-1) repeat if n rem m = 0 then sum := sum + m * lfunc(d,m) res := (d**(n::NNI) - sum) quo n inHallBasis?(n,i,j,l) == i >= j => false j <= n => true l <= i => true false generate(n:NNI,c:NNI) == gens:=n maxweight:=c siz:I := 0 for i in 1 .. maxweight repeat siz := siz + lfunc(gens,i) v:VLI:= new(siz::NNI,[]) for i in 1..gens repeat v(i) := [0, 1, i] firstindex:VI := new(maxweight::NNI,0) wt:I := 1 firstindex(1) := 1 numComms:I := gens newNumComms:I := numComms done:B := false while not done repeat wt := wt + 1 if wt > maxweight then done := true else firstindex(wt) := newNumComms + 1 leftIndex := 1 -- cW == complimentaryWeight cW:I := wt - 1 while (leftIndex <= numComms) and (v(leftIndex).2 <= cW) repeat for rightIndex in firstindex(cW)..(firstindex(cW+1) - 1) repeat if inHallBasis?(gens,leftIndex,rightIndex,v(rightIndex).1) then newNumComms := newNumComms + 1 v(newNumComms) := [leftIndex,wt,rightIndex] leftIndex := leftIndex + 1 cW := wt - v(leftIndex).2 numComms := newNumComms v @ \section{domain FNLA FreeNilpotentLie} <<domain FNLA FreeNilpotentLie>>= )abbrev domain FNLA FreeNilpotentLie ++ Author: Larry Lambe ++ Date Created: July 1988 ++ Date Last Updated: March 13 1991 ++ Related Constructors: OrderedSetInts, Commutator ++ AMS Classification: Primary 17B05, 17B30; Secondary 17A50 ++ Keywords: free Lie algebra, Hall basis, basic commutators ++ Related Constructors: HallBasis, FreeMod, Commutator, OrdSetInts ++ Description: Generate the Free Lie Algebra over a ring R with identity; ++ A P. Hall basis is generated by a package call to HallBasis. FreeNilpotentLie(n:NNI,class:NNI,R: CommutativeRing): Export == Implement where B ==> Boolean Com ==> Commutator HB ==> HallBasis I ==> Integer NNI ==> NonNegativeInteger O ==> OutputForm OSI ==> OrdSetInts FM ==> FreeModule(R,OSI) VI ==> Vector Integer VLI ==> Vector List Integer lC ==> leadingCoefficient lS ==> leadingSupport Export ==> NonAssociativeAlgebra(R) with dimension : () -> NNI ++ dimension() is the rank of this Lie algebra deepExpand : % -> O ++ deepExpand(x) \undocumented{} shallowExpand : % -> O ++ shallowExpand(x) \undocumented{} generator : NNI -> % ++ generator(i) is the ith Hall Basis element Implement ==> FM add Rep := FM f,g : % coms:VLI coms := generate(n,class)$HB dimension() == #coms have : (I,I) -> % -- have(left,right) is a lookup function for basic commutators -- already generated; if the nth basic commutator is -- [left,wt,right], then have(left,right) = n have(i,j) == wt:I := coms(i).2 + coms(j).2 wt > class => 0 lo:I := 1 hi:I := dimension() while hi-lo > 1 repeat mid:I := (hi+lo) quo 2 if coms(mid).2 < wt then lo := mid else hi := mid while coms(hi).1 < i repeat hi := hi + 1 while coms(hi).3 < j repeat hi := hi + 1 monomial(1,hi::OSI)$FM generator(i) == i > dimension() => 0$Rep monomial(1,i::OSI)$FM putIn : I -> % putIn(i) == monomial(1$R,i::OSI)$FM brkt : (I,%) -> % brkt(k,f) == f = 0 => 0 dg:I := value lS f reductum(f) = 0 => k = dg => 0 k > dg => -lC(f)*brkt(dg, putIn(k)) inHallBasis?(n,k,dg,coms(dg).1) => lC(f)*have(k, dg) lC(f)*( brkt(coms(dg).1, _ brkt(k,putIn coms(dg).3)) - brkt(coms(dg).3, _ brkt(k,putIn coms(dg).1) )) brkt(k,monomial(lC f,lS f)$FM)+brkt(k,reductum f) f*g == reductum(f) = 0 => lC(f)*brkt(value(lS f),g) monomial(lC f,lS f)$FM*g + reductum(f)*g Fac : I -> Com -- an auxilliary function used for output of Free Lie algebra -- elements (see expand) Fac(m) == coms(m).1 = 0 => mkcomm(m)$Com mkcomm(Fac coms(m).1, Fac coms(m).3) shallowE : (R,OSI) -> O shallowE(r,s) == k := value s r = 1 => k <= n => s::O mkcomm(mkcomm(coms(k).1)$Com,mkcomm(coms(k).3)$Com)$Com::O k <= n => r::O * s::O r::O * mkcomm(mkcomm(coms(k).1)$Com,mkcomm(coms(k).3)$Com)$Com::O shallowExpand(f) == f = 0 => 0@R::O reductum(f) = 0 => shallowE(lC f,lS f) shallowE(lC f,lS f) + shallowExpand(reductum f) deepExpand(f) == f = 0 => 0@R::O reductum(f) = 0 => lC(f)=1 => Fac(value(lS f))::O lC(f)::O * Fac(value(lS f))::O lC(f)=1 => Fac(value(lS f))::O + deepExpand(reductum f) lC(f)::O * Fac(value(lS f))::O + deepExpand(reductum f) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (c) 2007-2010, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain OSI OrdSetInts>> <<domain COMM Commutator>> <<package HB HallBasis>> <<domain FNLA FreeNilpotentLie>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}