\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra fmod.spad} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain ZMOD IntegerMod} <<domain ZMOD IntegerMod>>= )abbrev domain ZMOD IntegerMod ++ Author: ++ Date Created: ++ Date Last Updated: May 29, 2009 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ IntegerMod(n) creates the ring of integers reduced modulo the integer ++ n. IntegerMod(p:PositiveInteger): Join(CommutativeRing, Finite, ConvertibleTo Integer, StepThrough) == add size() == p characteristic == p lookup x == (zero? x => p; (convert(x)@Integer) :: PositiveInteger) -- Code is duplicated for the optimizer to kick in. if p <= convert(max()$SingleInteger)@Integer then Rep:= SingleInteger q := p::SingleInteger bloodyCompiler: Integer -> % bloodyCompiler n == positiveRemainder(n, p)$Integer :: Rep convert(x:%):Integer == convert(x)$Rep coerce(x):OutputForm == coerce(x)$Rep coerce(n:Integer):% == bloodyCompiler n 0 == 0$Rep 1 == 1$Rep init == 0$Rep nextItem(n) == m:=n+1 m=0 => "failed" m x = y == x =$Rep y x:% * y:% == mulmod(x, y, q) n:Integer * x:% == mulmod(bloodyCompiler n, x, q) x + y == addmod(x, y, q) x - y == submod(x, y, q) random() == random(q)$Rep index a == positiveRemainder(a::%, q) - x == (zero? x => 0; q -$Rep x) x:% ** n:NonNegativeInteger == n < p => powmod(x, n::Rep, q) powmod(convert(x)@Integer, n, p)$Integer :: Rep recip x == (c1, c2, g) := extendedEuclidean(x, q)$Rep not one? g => "failed" positiveRemainder(c1, q) before?(x,y) == before?(x,y)$Rep else Rep:= Integer convert(x:%):Integer == convert(x)$Rep coerce(n:Integer):% == positiveRemainder(n::Rep, p) coerce(x):OutputForm == coerce(x)$Rep 0 == 0$Rep 1 == 1$Rep init == 0$Rep nextItem(n) == m:=n+1 m=0 => "failed" m x = y == x =$Rep y x:% * y:% == mulmod(x, y, p) n:Integer * x:% == mulmod(positiveRemainder(n::Rep, p), x, p) x + y == addmod(x, y, p) x - y == submod(x, y, p) random() == random(p)$Rep index a == positiveRemainder(a::Rep, p) - x == (zero? x => 0; p -$Rep x) x:% ** n:NonNegativeInteger == powmod(x, n::Rep, p) recip x == (c1, c2, g) := extendedEuclidean(x, p)$Rep not one? g => "failed" positiveRemainder(c1, p) before?(x,y) == before?(x,y)$Rep @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain ZMOD IntegerMod>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}