\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra ffnb.spad}
\author{Johannes Grabmeier, Alfred Scheerhorn}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
-- 28.01.93: AS and JG: setting of initlog?, initmult?, and initelt? flags in
--    functions initializeLog, initializeMult and initializeElt put at the
--    end to avoid errors with interruption.
--    factorsOfCyclicGroupSize() changed.
-- 12.05.92: JG: long lines
-- 25.02.92: AS: parametrization of FFNBP changed, compatible to old
--               parametrization. Along with this some changes concerning
--               global variables and deletion of impl. of represents.
-- 25.02.92: AS: parameter in implementation of FFNB,FFNBX changed:
--               Extension now generated by
--               createLowComplexityNormalBasis(extdeg)$FFF(GF)
-- 25.02.92: AS  added following functions in FFNBP: degree,
--               linearAssociatedExp,linearAssociatedLog,linearAssociatedOrder
-- 19.02.92: AS: FFNBP trace + norm added.
-- 18.02.92: AS: INBFF normalElement corrected. The old one returned a wrong
--               result for a FFNBP(FFNBP(..)) domain.
\end{verbatim}
\section{package INBFF InnerNormalBasisFieldFunctions}
<<package INBFF InnerNormalBasisFieldFunctions>>=
)abbrev package INBFF InnerNormalBasisFieldFunctions
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated: 31 March 1991
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: finite field, normal basis
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encyclopedia of Mathematics and
++   Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  D.R.Stinson: Some observations on parallel Algorithms for fast
++   exponentiation in GF(2^n), Siam J. Comp., Vol.19, No.4, pp.711-717,
++   August 1990
++  T.Itoh, S.Tsujii: A fast algorithm for computing multiplicative inverses
++   in GF(2^m) using normal bases, Inf. and Comp. 78, pp.171-177, 1988
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++   AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  InnerNormalBasisFieldFunctions(GF) (unexposed):
++  This package has functions used by
++  every normal basis finite field extension domain.

InnerNormalBasisFieldFunctions(GF): Exports == Implementation where
  GF    : FiniteFieldCategory       -- the ground field

  PI   ==> PositiveInteger
  NNI  ==> NonNegativeInteger
  I    ==> Integer
  SI   ==> SingleInteger
  SUP  ==> SparseUnivariatePolynomial
  VGF  ==> Vector GF
  M    ==> Matrix
  V    ==> Vector
  L    ==> List
  OUT  ==> OutputForm
  TERM ==> Record(value:GF,index:SI)
  MM   ==> ModMonic(GF,SUP GF)

  Exports ==> with

      setFieldInfo: (V L TERM,GF) -> Void
        ++ setFieldInfo(m,p) initializes the field arithmetic, where m is
        ++ the multiplication table and p is the respective normal element
        ++ of the ground field GF.
      random    : PI           -> VGF
        ++ random(n) creates a vector over the ground field with random entries.
      index     : (PI,PI)      -> VGF
        ++ index(n,m) is a index function for vectors of length n over
        ++ the ground field.
      pol       : VGF          -> SUP GF
        ++ pol(v) turns the vector \spad{[v0,...,vn]} into the polynomial
        ++ \spad{v0+v1*x+ ... + vn*x**n}.
      xn         : NNI          -> SUP GF
        ++ xn(n) returns the polynomial \spad{x**n-1}.
      dAndcExp  : (VGF,NNI,SI) -> VGF
        ++ dAndcExp(v,n,k) computes \spad{v**e} interpreting v as an element of
        ++ normal basis field. A divide and conquer algorithm similar to the
        ++ one from D.R.Stinson,
        ++ "Some observations on parallel Algorithms for fast exponentiation in
        ++ GF(2^n)", Siam J. Computation, Vol.19, No.4, pp.711-717, August 1990
        ++ is used. Argument k is a parameter of this algorithm.
      repSq     : (VGF,NNI)    -> VGF
        ++ repSq(v,e) computes \spad{v**e} by repeated squaring,
        ++ interpreting v as an element of a normal basis field.
      expPot    : (VGF,SI,SI)  -> VGF
        ++ expPot(v,e,d) returns the sum from \spad{i = 0} to
        ++ \spad{e - 1} of \spad{v**(q**i*d)}, interpreting
        ++ v as an element of a normal basis field and where q is
        ++ the size of the ground field.
        ++ Note: for a description of the algorithm, see T.Itoh and S.Tsujii,
        ++ "A fast algorithm for computing multiplicative inverses in GF(2^m)
        ++ using normal bases",
        ++ Information and Computation 78, pp.171-177, 1988.
      qPot      : (VGF,I)      -> VGF
        ++ qPot(v,e) computes \spad{v**(q**e)}, interpreting v as an element of
        ++ normal basis field, q the size of the ground field.
        ++ This is done by a cyclic e-shift of the vector v.

-- the semantic of the following functions is obvious from the finite field
-- context, for description see category FAXF
      **      :(VGF,I)       -> VGF
	++ x**n \undocumented{}
	++ See \axiomFunFrom{**}{DivisionRing}
      *       :(VGF,VGF)     -> VGF
	++ x*y \undocumented{}
	++ See \axiomFunFrom{*}{SemiGroup}
      /       :(VGF,VGF)     -> VGF
	++ x/y \undocumented{}
	++ See \axiomFunFrom{/}{Field}
      norm      :(VGF,PI)      -> VGF
	++ norm(x,n) \undocumented{}
	++ See \axiomFunFrom{norm}{FiniteAlgebraicExtensionField}
      trace     :(VGF,PI)      -> VGF
	++ trace(x,n) \undocumented{}
	++ See \axiomFunFrom{trace}{FiniteAlgebraicExtensionField}
      inv       : VGF          -> VGF
	++ inv x \undocumented{}
	++ See \axiomFunFrom{inv}{DivisionRing}
      lookup    : VGF          -> PI
	++ lookup(x) \undocumented{}
	++ See \axiomFunFrom{lookup}{Finite}
      normal?   : VGF          -> Boolean
	++ normal?(x) \undocumented{}
	++ See \axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}
      basis     : PI           -> V VGF
	++ basis(n) \undocumented{}
	++ See \axiomFunFrom{basis}{FiniteAlgebraicExtensionField}
      normalElement:PI         -> VGF
	++ normalElement(n) \undocumented{}
	++ See \axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}
      minimalPolynomial: VGF   -> SUP GF
	++ minimalPolynomial(x) \undocumented{}
	++ See \axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}

  Implementation ==> add

-- global variables ===================================================

    sizeGF:NNI:=size()$GF
    -- the size of the ground field

    multTable:V L TERM:=new(1,nil()$(L TERM))$(V L TERM)
    -- global variable containing the multiplication table

    trGen:GF:=1$GF
    -- controls the imbedding of the ground field

    logq:List SI:=[0,10::SI,16::SI,20::SI,23::SI,0,28::SI,_
                             30::SI,32::SI,0,35::SI]
    -- logq.i is about 10*log2(i) for the values <12 which
    -- can match sizeGF. It's used by "**"

    expTable:L L SI:=[[],_
        [4::SI,12::SI,48::SI,160::SI,480::SI,0],_
        [8::SI,72::SI,432::SI,0],_
        [18::SI,216::SI,0],_
        [32::SI,480::SI,0],[],_
        [72::SI,0],[98::SI,0],[128::SI,0],[],[200::SI,0]]
    -- expT is used by "**" to optimize the parameter k
    -- before calling dAndcExp(..,..,k)

-- functions ===========================================================

--  computes a**(-1) = a**((q**extDeg)-2)
--  see reference of function expPot
    inv(a) ==
      b:VGF:=qPot(expPot(a,(#a-1)::NNI::SI,1::SI)$$,1)$$
      erg:VGF:=inv((a *$$ b).1 *$GF trGen)$GF *$VGF b

-- "**" decides which exponentiation algorithm will be used, in order to
-- get the fastest computation. If dAndcExp is used, it chooses the
-- optimal parameter k for that algorithm.
    a ** ex  ==
      e:NNI:=positiveRemainder(ex,sizeGF**((#a)::PI)-1)$I :: NNI
      zero?(e)$NNI => new(#a,trGen)$VGF
      one?(e)$NNI  => copy(a)$VGF
--    inGroundField?(a) => new(#a,((a.1*trGen) **$GF e))$VGF
      e1:SI:=(length(e)$I)::SI
      sizeGF >$I 11 =>
        q1:SI:=(length(sizeGF)$I)::SI
        logqe:SI:=(e1 quo$SI q1) +$SI 1$SI
        10::SI * (logqe + sizeGF-2) > 15::SI * e1 =>
--        print("repeatedSquaring"::OUT)
          repSq(a,e)
--      print("divAndConquer(a,e,1)"::OUT)
        dAndcExp(a,e,1)
      logqe:SI:=((10::SI *$SI e1) quo$SI (logq.sizeGF)) +$SI 1$SI
      k:SI:=1$SI
      expT:List SI:=expTable.sizeGF
      while (logqe >= expT.k) and not zero? expT.k repeat k:=k +$SI 1$SI
      mult:I:=(sizeGF-1) *$I sizeGF **$I ((k-1)pretend NNI) +$I_
              ((logqe +$SI k -$SI 1$SI) quo$SI k)::I -$I 2
      (10*mult) >= (15 * (e1::I)) =>
--      print("repeatedSquaring(a,e)"::OUT)
        repSq(a,e)
--    print(hconcat(["divAndConquer(a,e,"::OUT,k::OUT,")"::OUT])$OUT)
      dAndcExp(a,e,k)

-- computes a**e by repeated squaring
    repSq(b,e) ==
      a:=copy(b)$VGF
      one? e => a
      odd?(e)$I => a * repSq(a*a,(e quo 2) pretend NNI)
      repSq(a*a,(e quo 2) pretend NNI)

-- computes a**e using the divide and conquer algorithm similar to the
-- one from D.R.Stinson,
-- "Some observations on parallel Algorithms for fast exponentiation in
-- GF(2^n)", Siam J. Computation, Vol.19, No.4, pp.711-717, August 1990
    dAndcExp(a,e,k) ==
      plist:List VGF:=[copy(a)$VGF]
      qk:I:=sizeGF**(k pretend NNI)
      for j in 2..(qk-1) repeat
        if positiveRemainder(j,sizeGF)=0 then b:=qPot(plist.(j quo sizeGF),1)$$
                            else b:=a *$$ last(plist)$(List VGF)
        plist:=concat(plist,b)
      l:List NNI:=nil()
      ex:I:=e
      while not(ex = 0) repeat
        l:=concat(l,positiveRemainder(ex,qk) pretend NNI)
        ex:=ex quo qk
      if first(l)=0 then erg:VGF:=new(#a,trGen)$VGF
                    else erg:VGF:=plist.(first(l))
      i:SI:=k
      for j in rest(l) repeat
        if not zero? j then erg:=erg *$$ qPot(plist.j,i)$$
        i:=i+k
      erg

    a * b ==
      e:SI:=(#a)::SI
      erg:=zero(#a)$VGF
      for t in multTable.1 repeat
        for j in 1..e repeat
          y:=t.value  -- didn't work without defining x and y
          x:=t.index
          k:SI:=addmod(x,j::SI,e)$SI +$SI 1$SI
          erg.k:=erg.k +$GF a.j *$GF b.j *$GF y
      for i in 1..e-1 repeat
        for j in i+1..e repeat
          for t in multTable.(j-i+1) repeat
            y:=t.value   -- didn't work without defining x and y
            x:=t.index
            k:SI:=addmod(x,i::SI,e)$SI +$SI 1$SI
            erg.k:GF:=erg.k +$GF (a.i *$GF b.j +$GF a.j *$GF b.i) *$GF y
      erg

    lookup(x) ==
      erg:I:=0
      for j in (#x)..1 by -1 repeat
        erg:=(erg * sizeGF) + (lookup(x.j)$GF rem sizeGF)
      erg=0 => (sizeGF**(#x)) :: PI
      erg :: PI

--  computes the norm of a over GF**d, d must devide extdeg
--  see reference of function expPot below
    norm(a,d) ==
      dSI:=d::SI
      r:=divide((#a)::SI,dSI)
      not(r.remainder = 0) => error "norm: 2.arg must divide extdeg"
      expPot(a,r.quotient,dSI)$$

--  computes expPot(a,e,d) = sum form i=0 to e-1 over a**(q**id))
--  see T.Itoh and S.Tsujii,
--  "A fast algorithm for computing multiplicative inverses in GF(2^m)
--   using normal bases",
--  Information and Computation 78, pp.171-177, 1988
    expPot(a,e,d) ==
      deg:SI:=(#a)::SI
      e=1 => copy(a)$VGF
      k2:SI:=d
      y:=copy(a)
      if bit?(e,0) then
        erg:=copy(y)
        qpot:SI:=k2
      else
        erg:=new(#a,inv(trGen)$GF)$VGF
        qpot:SI:=0
      for k in 1..length(e) repeat
        y:= y *$$ qPot(y,k2)
        k2:=addmod(k2,k2,deg)$SI
        if bit?(e,k) then
          erg:=erg *$$ qPot(y,qpot)
          qpot:=addmod(qpot,k2,deg)$SI
      erg

-- computes qPot(a,n) = a**(q**n), q=size of GF
    qPot(e,n) ==
      ei:=(#e)::SI
      m:SI:= positiveRemainder(n::SI,ei)$SI
      zero?(m) => e
      e1:=zero(#e)$VGF
      for i in m+1..ei repeat e1.i:=e.(i-m)
      for i in 1..m    repeat e1.i:=e.(ei+i-m)
      e1

    trace(a,d) ==
      dSI:=d::SI
      r:=divide((#a)::SI,dSI)$SI
      not(r.remainder = 0) => error "trace: 2.arg must divide extdeg"
      v:=copy(a.(1..dSI))$VGF
      sSI:SI:=r.quotient
      for i in 1..dSI repeat
        for j in 1..sSI-1 repeat
          v.i:=v.i+a.(i+j::SI*dSI)
      v

    random(n) ==
      v:=zero(n)$VGF
      for i in 1..n repeat v.i:=random()$GF
      v


    xn(m) == monomial(1,m)$(SUP GF) - 1$(SUP GF)

    normal?(x) ==
      gcd(xn(#x),pol(x))$(SUP GF) = 1 => true
      false

    x:VGF / y:VGF == x *$$ inv(y)$$


    setFieldInfo(m,n) ==
      multTable:=m
      trGen:=n

    minimalPolynomial(x) ==
      dx:=#x
      y:=new(#x,inv(trGen)$GF)$VGF
      m:=zero(dx,dx+1)$(M GF)
      for i in 1..dx+1 repeat
        dy:=#y
        for j in 1..dy repeat
          for k in 0..((dx quo dy)-1) repeat
            qsetelt!(m,j+k*dy,i,y.j)$(M GF)
        y:=y *$$ x
      v:=first nullSpace(m)$(M GF)
      pol(v)$$

    basis(n) ==
      bas:(V VGF):=new(n,zero(n)$VGF)$(V VGF)
      for i in 1..n repeat
        uniti:=zero(n)$VGF
        qsetelt!(uniti,i,1$GF)$VGF
        qsetelt!(bas,i,uniti)$(V VGF)
      bas

    normalElement(n) ==
       v:=zero(n)$VGF
       qsetelt!(v,1,1$GF)
       v
--    normalElement(n) == index(n,1)$$

    index(degm,n) ==
      m:I:=n rem$I (sizeGF ** degm)
      erg:=zero(degm)$VGF
      for j in 1..degm repeat
        erg.j:=index((sizeGF+(m rem sizeGF)) pretend PI)$GF
        m:=m quo sizeGF
      erg

    pol(x) ==
      +/[monomial(x.i,(i-1)::NNI)$(SUP GF) for i in 1..(#x)::I]

@

\section{domain FFNBP FiniteFieldNormalBasisExtensionByPolynomial}

<<domain FFNBP FiniteFieldNormalBasisExtensionByPolynomial>>=
import NonNegativeInteger
import Matrix
)abbrev domain FFNBP FiniteFieldNormalBasisExtensionByPolynomial
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated: 08 May 1991
++ Basic Operations:
++ Related Constructors: InnerNormalBasisFieldFunctions, FiniteFieldFunctions,
++ Also See: FiniteFieldExtensionByPolynomial,
++  FiniteFieldCyclicGroupExtensionByPolynomial
++ AMS Classifications:
++ Keywords: finite field, normal basis
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encyclopedia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM .
++   AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteFieldNormalBasisExtensionByPolynomial(GF,uni) implements a
++  finite extension of the ground field {\em GF}. The elements are
++  represented by coordinate vectors with respect to. a normal basis,
++  i.e. a basis
++  consisting of the conjugates (q-powers) of an element, in this case
++  called normal element, where q is the size of {\em GF}.
++  The normal element is chosen as a root of the extension
++  polynomial, which MUST be normal over {\em GF}  (user responsibility)
FiniteFieldNormalBasisExtensionByPolynomial(GF,uni): Exports == _
    Implementation where
  GF    : FiniteFieldCategory            -- the ground field
  uni   : Union(SparseUnivariatePolynomial GF,_
            Vector List Record(value:GF,index:SingleInteger))

  PI   ==> PositiveInteger
  NNI  ==> NonNegativeInteger
  I    ==> Integer
  SI   ==> SingleInteger
  SUP  ==> SparseUnivariatePolynomial
  V    ==> Vector GF
  M    ==> Matrix GF
  OUT  ==> OutputForm
  TERM ==> Record(value:GF,index:SI)
  R    ==> Record(key:PI,entry:NNI)
  TBL  ==> Table(PI,NNI)
  FFF    ==> FiniteFieldFunctions(GF)
  INBFF  ==> InnerNormalBasisFieldFunctions(GF)

  Exports ==> FiniteAlgebraicExtensionField(GF)  with

      getMultiplicationTable: ()   -> Vector List TERM
        ++ getMultiplicationTable() returns the multiplication
        ++ table for the normal basis of the field.
        ++ This table is used to perform multiplications between field elements.
      getMultiplicationMatrix:()     -> M
        ++ getMultiplicationMatrix() returns the multiplication table in
        ++ form of a matrix.
      sizeMultiplication:()   -> NNI
        ++ sizeMultiplication() returns the number of entries in the
        ++ multiplication table of the field.
        ++ Note: the time of multiplication
        ++ of field elements depends on this size.
  Implementation ==> add

-- global variables ===================================================

    Rep:= V     -- elements are represented by vectors over GF

    alpha       :=new()$Symbol :: OutputForm
    -- get a new Symbol for the output representation of the elements

    initlog?:Boolean:=true
    -- gets false after initialization of the logarithm table

    initelt?:Boolean:=true
    -- gets false after initialization of the primitive element

    initmult?:Boolean:=true
    -- gets false after initialization of the multiplication
    -- table or the primitive element

    extdeg:PI   :=1

    defpol:SUP(GF):=0$SUP(GF)
    -- the defining polynomial

    multTable:Vector List TERM:=new(1,nil()$(List TERM))
    -- global variable containing the multiplication table

    if uni case (Vector List TERM) then
      multTable:=uni :: (Vector List TERM)
      extdeg:= (#multTable) pretend PI
      vv:V:=new(extdeg,0)$V
      vv.1:=1$GF
      setFieldInfo(multTable,1$GF)$INBFF
      defpol:=minimalPolynomial(vv)$INBFF
      initmult?:=false
     else
      defpol:=uni :: SUP(GF)
      extdeg:=degree(defpol)$(SUP GF) pretend PI
      multTable:Vector List TERM:=new(extdeg,nil()$(List TERM))

    basisOutput : List OUT :=
      qs:OUT:=(q::Symbol)::OUT
      append([alpha, alpha **$OUT qs],_
        [alpha **$OUT (qs **$OUT i::OUT) for i in 2..extdeg-1] )


    facOfGroupSize :=nil()$(List Record(factor:Integer,exponent:Integer))
    -- the factorization of the cyclic group size


    traceAlpha:GF:=-$GF coefficient(defpol,(degree(defpol)-1)::NNI)
    -- the inverse of the trace of the normalElt
    -- is computed here. It defines the imbedding of
    -- GF in the extension field

    primitiveElt:PI:=1
    -- for the lookup the primitive Element computed by createPrimitiveElement()

    discLogTable:Table(PI,TBL):=table()$Table(PI,TBL)
    -- tables indexed by the factors of sizeCG,
    -- discLogTable(factor) is a table with keys
    -- primitiveElement() ** (i * (sizeCG quo factor)) and entries i for
    -- i in 0..n-1, n computed in initialize() in order to use
    -- the minimal size limit 'limit' optimal.

-- functions ===========================================================

    initializeLog: ()     -> Void
    initializeElt: ()     -> Void
    initializeMult: ()     -> Void


    coerce(v:GF):$  == new(extdeg,v /$GF traceAlpha)$Rep
    represents(v)   ==  v::$

    degree(a: %): PositiveInteger ==
      d:PI:=1
      b:= qPot(a::Rep,1)$INBFF
      while (b~=a) repeat
        b:= qPot(b::Rep,1)$INBFF
        d:=d+1
      d

    linearAssociatedExp(x,f) ==
      xm:SUP(GF):=monomial(1$GF,extdeg)$(SUP GF) - 1$(SUP GF)
      r:= (f * pol(x::Rep)$INBFF) rem xm
      vectorise(r,extdeg)$(SUP GF)
    linearAssociatedLog(x) ==  pol(x::Rep)$INBFF
    linearAssociatedOrder(x) ==
      xm:SUP(GF):=monomial(1$GF,extdeg)$(SUP GF) - 1$(SUP GF)
      xm quo gcd(xm,pol(x::Rep)$INBFF)
    linearAssociatedLog(b,x) ==
      zero? x => 0
      xm:SUP(GF):=monomial(1$GF,extdeg)$(SUP GF) - 1$(SUP GF)
      e:= extendedEuclidean(pol(b::Rep)$INBFF,xm,pol(x::Rep)$INBFF)$(SUP GF)
      e = "failed" => "failed"
      e1:= e :: Record(coef1:(SUP GF),coef2:(SUP GF))
      e1.coef1

    getMultiplicationTable() ==
      if initmult? then initializeMult()
      multTable
    getMultiplicationMatrix() ==
      if initmult? then initializeMult()
      createMultiplicationMatrix(multTable)$FFF
    sizeMultiplication() ==
      if initmult? then initializeMult()
      sizeMultiplication(multTable)$FFF

    trace(a:$) == retract trace(a,1)
    norm(a:$) == retract norm(a,1)
    generator() == normalElement(extdeg)$INBFF
    basis(n:PI) ==
      (extdeg rem n) ~= 0 => error "argument must divide extension degree"
      [Frobenius(trace(normalElement(),n),i) for i in 0..(n-1)]::(Vector $)

    a:GF * x:$ == a *$Rep x

    x:$/a:GF == x/coerce(a)
--    x:$ / a:GF ==
--      a = 0$GF => error "division by zero"
--      x * inv(coerce(a))


    coordinates(x:$)  == x::Rep

    Frobenius(e) == qPot(e::Rep,1)$INBFF
    Frobenius(e,n) == qPot(e::Rep,n)$INBFF

    retractIfCan(x) ==
      inGroundField?(x) =>
        x.1 *$GF traceAlpha
      "failed"

    retract(x) ==
      inGroundField?(x) =>
        x.1 *$GF traceAlpha
      error("element not in ground field")

-- to get a "normal basis like" output form
    coerce(x:$):OUT ==
      l:List OUT:=nil()$(List OUT)
      n : PI := extdeg
      one? n => (x.1) :: OUT
      for i in 1..n for b in basisOutput repeat
        if not zero? x.i then
          mon : OUT :=
            one? x.i => b
            ((x.i)::OUT) *$OUT b
          l:=cons(mon,l)$(List OUT)
      null(l)$(List OUT) => (0::OUT)
      r:=reduce("+",l)$(List OUT)
      r

    initializeElt() ==
      facOfGroupSize := factors factor(size()$GF**extdeg-1)$I
      -- get a primitive element
      primitiveElt:=lookup(createPrimitiveElement())
      initelt?:=false

    initializeMult() ==
      multTable:=createMultiplicationTable(defpol)$FFF
      setFieldInfo(multTable,traceAlpha)$INBFF
      -- reset initialize flag
      initmult?:=false

    initializeLog() ==
      if initelt? then initializeElt()
      -- set up tables for discrete logarithm
      limit:Integer:=30
      -- the minimum size for the discrete logarithm table
      for f in facOfGroupSize repeat
        fac:=f.factor
        base:$:=index(primitiveElt)**((size()$GF**extdeg -$I 1$I) quo$I fac)
        l:Integer:=length(fac)$Integer
        n:Integer:=0
        if odd?(l)$I then n:=shift(fac,-$I (l quo$I 2))$I
                     else n:=shift(1,l quo$I 2)$I
        if n <$I limit then
          d:=(fac -$I 1$I) quo$I limit +$I 1$I
          n:=(fac -$I 1$I) quo$I d +$I 1$I
        tbl:TBL:=table()$TBL
        a:$:=1
        for i in (0::NNI)..(n-1)::NNI repeat
          insert!([lookup(a),i::NNI]$R,tbl)$TBL
          a:=a*base
        insert!([fac::PI,copy(tbl)$TBL]_
               $Record(key:PI,entry:TBL),discLogTable)$Table(PI,TBL)
      initlog?:=false
      -- tell user about initialization
      --print("discrete logarithm table initialized"::OUT)

    tableForDiscreteLogarithm(fac) ==
      if initlog? then initializeLog()
      tbl:=search(fac::PI,discLogTable)$Table(PI,TBL)
      tbl case "failed" =>
        error "tableForDiscreteLogarithm: argument must be prime _
divisor of the order of the multiplicative group"
      tbl :: TBL

    primitiveElement() ==
      if initelt? then initializeElt()
      index(primitiveElt)

    factorsOfCyclicGroupSize() ==
      if empty? facOfGroupSize then initializeElt()
      facOfGroupSize

    extensionDegree(): PositiveInteger == extdeg

    sizeOfGroundField() == size()$GF pretend NNI

    definingPolynomial() == defpol

    trace(a,d) ==
      v:=trace(a::Rep,d)$INBFF
      erg:=v
      for i in 2..(extdeg quo d) repeat
        erg:=concat(erg,v)$Rep
      erg

    characteristic == characteristic$GF

    random() == random(extdeg)$INBFF

    x:$ * y:$ ==
      if initmult? then initializeMult()
      setFieldInfo(multTable,traceAlpha)$INBFF
      x::Rep *$INBFF y::Rep


    1 == new(extdeg,inv(traceAlpha)$GF)$Rep

    0 == zero(extdeg)$Rep

    size() == size()$GF ** extdeg

    index(n:PI) == index(extdeg,n)$INBFF

    lookup(x:$) == lookup(x::Rep)$INBFF


    basis() ==
      a:=basis(extdeg)$INBFF
      vector([e::$ for e in entries a])


    x:$ ** e:I ==
      if initmult? then initializeMult()
      setFieldInfo(multTable,traceAlpha)$INBFF
      (x::Rep) **$INBFF e

    normal?(x) == normal?(x::Rep)$INBFF

    -(x:$) == -$Rep x
    x:$ + y:$ == x +$Rep y
    x:$ - y:$ == x -$Rep y
    x:$ = y:$ == x =$Rep y
    n:I * x:$ == x *$Rep (n::GF)




    representationType() == "normal"

    minimalPolynomial(a) ==
      if initmult? then initializeMult()
      setFieldInfo(multTable,traceAlpha)$INBFF
      minimalPolynomial(a::Rep)$INBFF

-- is x an element of the ground field GF ?
    inGroundField?(x) ==
      erg:=true
      for i in 2..extdeg repeat
        not(x.i =$GF x.1) => erg:=false
      erg

    x:$ / y:$ ==
      if initmult? then initializeMult()
      setFieldInfo(multTable,traceAlpha)$INBFF
      x::Rep /$INBFF y::Rep

    inv(a) ==
      if initmult? then initializeMult()
      setFieldInfo(multTable,traceAlpha)$INBFF
      inv(a::Rep)$INBFF

    norm(a,d) ==
      if initmult? then initializeMult()
      setFieldInfo(multTable,traceAlpha)$INBFF
      norm(a::Rep,d)$INBFF

    normalElement() == normalElement(extdeg)$INBFF

@
\section{domain FFNBX FiniteFieldNormalBasisExtension}
<<domain FFNBX FiniteFieldNormalBasisExtension>>=
)abbrev domain FFNBX FiniteFieldNormalBasisExtension
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated:
++ Basic Operations:
++ Related Constructors: FiniteFieldNormalBasisExtensionByPolynomial,
++  FiniteFieldPolynomialPackage
++ Also See: FiniteFieldExtension, FiniteFieldCyclicGroupExtension
++ AMS Classifications:
++ Keywords: finite field, normal basis
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encyclopedia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++   AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteFieldNormalBasisExtensionByPolynomial(GF,n)  implements a
++  finite extension field of degree n over the ground field {\em GF}.
++  The elements are represented by coordinate vectors with respect
++  to a normal basis,
++  i.e. a basis consisting of the conjugates (q-powers) of an element, in
++  this case called normal element. This is chosen as a root of the extension
++  polynomial, created by {\em createNormalPoly} from
++  \spadtype{FiniteFieldPolynomialPackage}
FiniteFieldNormalBasisExtension(GF,extdeg):_
  Exports == Implementation where
  GF    : FiniteFieldCategory                -- the ground field
  extdeg: PositiveInteger                    -- the extension degree
  NNI     ==> NonNegativeInteger
  FFF         ==> FiniteFieldFunctions(GF)
  TERM    ==> Record(value:GF,index:SingleInteger)
  Exports ==> FiniteAlgebraicExtensionField(GF)  with
    getMultiplicationTable: ()   -> Vector List TERM
      ++ getMultiplicationTable() returns the multiplication
      ++ table for the normal basis of the field.
      ++ This table is used to perform multiplications between field elements.
    getMultiplicationMatrix: ()  -> Matrix GF
      ++ getMultiplicationMatrix() returns the multiplication table in
      ++ form of a matrix.
    sizeMultiplication:()   -> NNI
      ++ sizeMultiplication() returns the number of entries in the
      ++ multiplication table of the field. Note: the time of multiplication
      ++ of field elements depends on this size.

  Implementation ==> FiniteFieldNormalBasisExtensionByPolynomial(GF,_
                    createLowComplexityNormalBasis(extdeg)$FFF)

@
\section{domain FFNB FiniteFieldNormalBasis}
<<domain FFNB FiniteFieldNormalBasis>>=
)abbrev domain FFNB FiniteFieldNormalBasis
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated:
++ Basic Operations:
++ Related Constructors: FiniteFieldNormalBasisExtensionByPolynomial,
++  FiniteFieldPolynomialPackage
++ Also See: FiniteField, FiniteFieldCyclicGroup
++ AMS Classifications:
++ Keywords: finite field, normal basis
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encyclopedia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++   AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteFieldNormalBasis(p,n) implements a
++  finite extension field of degree n over the prime field with p elements.
++  The elements are represented by coordinate vectors with respect to
++  a normal basis,
++  i.e. a basis consisting of the conjugates (q-powers) of an element, in
++  this case called normal element.
++  This is chosen as a root of the extension polynomial
++  created by \spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.
FiniteFieldNormalBasis(p,extdeg):_
  Exports == Implementation where
  p : PositiveInteger
  extdeg: PositiveInteger                    -- the extension degree
  NNI     ==> NonNegativeInteger
  FFF  ==> FiniteFieldFunctions(PrimeField(p))
  TERM    ==> Record(value:PrimeField(p),index:SingleInteger)
  Exports ==> FiniteAlgebraicExtensionField(PrimeField(p))  with
    getMultiplicationTable: ()   -> Vector List TERM
      ++ getMultiplicationTable() returns the multiplication
      ++ table for the normal basis of the field.
      ++ This table is used to perform multiplications between field elements.
    getMultiplicationMatrix: ()  -> Matrix PrimeField(p)
      ++ getMultiplicationMatrix() returns the multiplication table in
      ++ form of a matrix.
    sizeMultiplication:()   -> NNI
      ++ sizeMultiplication() returns the number of entries in the
      ++ multiplication table of the field. Note: The time of multiplication
      ++ of field elements depends on this size.

  Implementation ==> FiniteFieldNormalBasisExtensionByPolynomial(PrimeField(p),_
                    createLowComplexityNormalBasis(extdeg)$FFF)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2010, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package INBFF InnerNormalBasisFieldFunctions>>
<<domain FFNBP FiniteFieldNormalBasisExtensionByPolynomial>>
<<domain FFNBX FiniteFieldNormalBasisExtension>>
<<domain FFNB FiniteFieldNormalBasis>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}