\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra ffhom.spad} \author{Johannes Grabmeier, Alfred Scheerhorn} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \begin{verbatim} -- 28.01.93: AS and JG: setting of init? flag in -- functions initialize put at the -- end to avoid errors with interruption. -- 12.05.92 JG: long lines -- 17.02.92 AS: convertWRTdifferentDefPol12 and convertWRTdifferentDefPol21 -- simplified. -- 17.02.92 AS: initialize() modified set up of basis change -- matrices between normal and polynomial rep. -- New version uses reducedQPowers and is more efficient. -- 24.07.92 JG: error messages improved \end{verbatim} \section{package FFHOM FiniteFieldHomomorphisms} <<package FFHOM FiniteFieldHomomorphisms>>= )abbrev package FFHOM FiniteFieldHomomorphisms ++ Authors: J.Grabmeier, A.Scheerhorn ++ Date Created: 26.03.1991 ++ Date Last Updated: ++ Basic Operations: ++ Related Constructors: FiniteFieldCategory, FiniteAlgebraicExtensionField ++ Also See: ++ AMS Classifications: ++ Keywords: finite field, homomorphism, isomorphism ++ References: ++ R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and ++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4 ++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM. ++ AXIOM Technical Report Series, ATR/5 NP2522. ++ Description: ++ FiniteFieldHomomorphisms(F1,GF,F2) exports coercion functions of ++ elements between the fields {\em F1} and {\em F2}, which both must be ++ finite simple algebraic extensions of the finite ground field {\em GF}. FiniteFieldHomomorphisms(F1,GF,F2): Exports == Implementation where F1: FiniteAlgebraicExtensionField(GF) GF: FiniteFieldCategory F2: FiniteAlgebraicExtensionField(GF) -- the homorphism can only convert elements w.r.t. the last extension . -- Adding a function 'groundField()' which returns the groundfield of GF -- as a variable of type FiniteFieldCategory in the new compiler, one -- could build up 'convert' recursively to get an homomorphism w.r.t -- the whole extension. I ==> Integer NNI ==> NonNegativeInteger SI ==> SingleInteger PI ==> PositiveInteger SUP ==> SparseUnivariatePolynomial M ==> Matrix GF FFP ==> FiniteFieldExtensionByPolynomial FFPOL2 ==> FiniteFieldPolynomialPackage2 FFPOLY ==> FiniteFieldPolynomialPackage OUT ==> OutputForm Exports ==> with coerce: F1 -> F2 ++ coerce(x) is the homomorphic image of x from ++ {\em F1} in {\em F2}. Thus {\em coerce} is a ++ field homomorphism between the fields extensions ++ {\em F1} and {\em F2} both over ground field {\em GF} ++ (the second argument to the package). ++ Error: if the extension degree of {\em F1} doesn't divide ++ the extension degree of {\em F2}. ++ Note that the other coercion function in the ++ \spadtype{FiniteFieldHomomorphisms} is a left inverse. coerce: F2 -> F1 ++ coerce(x) is the homomorphic image of x from ++ {\em F2} in {\em F1}, where {\em coerce} is a ++ field homomorphism between the fields extensions ++ {\em F2} and {\em F1} both over ground field {\em GF} ++ (the second argument to the package). ++ Error: if the extension degree of {\em F2} doesn't divide ++ the extension degree of {\em F1}. ++ Note that the other coercion function in the ++ \spadtype{FiniteFieldHomomorphisms} is a left inverse. -- coerce(coerce(x:F1)@F2)@F1 = x and coerce(coerce(y:F2)@F1)@F2 = y Implementation ==> add -- global variables =================================================== degree1:NNI:= extensionDegree()$F1 degree2:NNI:= extensionDegree()$F2 -- the degrees of the last extension -- a necessary condition for the one field being an subfield of -- the other one is, that the respective extension degrees are -- multiples if max(degree1,degree2) rem min(degree1,degree2) ~= 0 then error "FFHOM: one extension degree must divide the other one" conMat1to2:M:= zero(degree2,degree1)$M -- conversion Matix for the conversion direction F1 -> F2 conMat2to1:M:= zero(degree1,degree2)$M -- conversion Matix for the conversion direction F2 -> F1 repType1:=representationType()$F1 repType2:=representationType()$F2 -- the representation types of the fields init?:Boolean:=true -- gets false after initialization defPol1:=definingPolynomial()$F1 defPol2:=definingPolynomial()$F2 -- the defining polynomials of the fields -- functions ========================================================== compare: (SUP GF,SUP GF) -> Boolean -- compares two polynomials convertWRTsameDefPol12: F1 -> F2 convertWRTsameDefPol21: F2 -> F1 -- homomorphism if the last extension of F1 and F2 was build up -- using the same defining polynomials convertWRTdifferentDefPol12: F1 -> F2 convertWRTdifferentDefPol21: F2 -> F1 -- homomorphism if the last extension of F1 and F2 was build up -- with different defining polynomials initialize: () -> Void -- computes the conversion matrices compare(g:(SUP GF),f:(SUP GF)) == degree(f)$(SUP GF) >$NNI degree(g)$(SUP GF) => true degree(f)$(SUP GF) <$NNI degree(g)$(SUP GF) => false equal:Integer:=0 for i in degree(f)$(SUP GF)..0 by -1 while equal=0 repeat not zero?(coefficient(f,i)$(SUP GF))$GF and _ zero?(coefficient(g,i)$(SUP GF))$GF => equal:=1 not zero?(coefficient(g,i)$(SUP GF))$GF and _ zero?(coefficient(f,i)$(SUP GF))$GF => equal:=(-1) (f1:=lookup(coefficient(f,i)$(SUP GF))$GF) >$PositiveInteger _ (g1:=lookup(coefficient(g,i)$(SUP GF))$GF) => equal:=1 f1 <$PositiveInteger g1 => equal:=(-1) equal=1 => true false initialize() == -- 1) in the case of equal def. polynomials initialize is called only -- if one of the rep. types is "normal" and the other one is "polynomial" -- we have to compute the basis change matrix 'mat', which i-th -- column are the coordinates of a**(q**i), the i-th component of -- the normal basis ('a' the root of the def. polynomial and q the -- size of the groundfield) defPol1 =$(SUP GF) defPol2 => -- new code using reducedQPowers mat:=zero(degree1,degree1)$M arr:=reducedQPowers(defPol1)$FFPOLY(GF) for i in 1..degree1 repeat setColumn!(mat,i,vectorise(arr.(i-1),degree1)$SUP(GF))$M -- old code -- here one of the representation types must be "normal" --a:=basis()$FFP(GF,defPol1).2 -- the root of the def. polynomial --setColumn!(mat,1,coordinates(a)$FFP(GF,defPol1))$M --for i in 2..degree1 repeat -- a:= a **$FFP(GF,defPol1) size()$GF -- setColumn!(mat,i,coordinates(a)$FFP(GF,defPol1))$M --for the direction "normal" -> "polynomial" we have to multiply the -- coordinate vector of an element of the normal basis field with -- the matrix 'mat'. In this case 'mat' is the correct conversion -- matrix for the conversion of F1 to F2, its inverse the correct -- inversion matrix for the conversion of F2 to F1 repType1 = "normal" => -- repType2 = "polynomial" conMat1to2:=copy(mat) conMat2to1:=copy(inverse(mat)$M :: M) --we finish the function for one case, hence reset initialization flag init? := false -- print("'normal' <=> 'polynomial' matrices initialized"::OUT) -- in the other case we have to change the matrices -- repType2 = "normal" and repType1 = "polynomial" conMat2to1:=copy(mat) conMat1to2:=copy(inverse(mat)$M :: M) -- print("'normal' <=> 'polynomial' matrices initialized"::OUT) --we finish the function for one case, hence reset initialization flag init? := false -- 2) in the case of different def. polynomials we have to order the -- fields to get the same isomorphism, if the package is called with -- the fields F1 and F2 swapped. dPbig:= defPol2 rTbig:= repType2 dPsmall:= defPol1 rTsmall:= repType1 degbig:=degree2 degsmall:=degree1 if compare(defPol2,defPol1) then degsmall:=degree2 degbig:=degree1 dPbig:= defPol1 rTbig:= repType1 dPsmall:= defPol2 rTsmall:= repType2 -- 3) in every case we need a conversion between the polynomial -- represented fields. Therefore we compute 'root' as a root of the -- 'smaller' def. polynomial in the 'bigger' field. -- We compute the matrix 'matsb', which i-th column are the coordinates -- of the (i-1)-th power of root, i=1..degsmall. Multiplying a -- coordinate vector of an element of the 'smaller' field by this -- matrix, we got the coordinates of the corresponding element in the -- 'bigger' field. -- compute the root of dPsmall in the 'big' field root:=rootOfIrreduciblePoly(dPsmall)$FFPOL2(FFP(GF,dPbig),GF) -- set up matrix for polynomial conversion matsb:=zero(degbig,degsmall)$M qsetelt!(matsb,1,1,1$GF)$M a:=root for i in 2..degsmall repeat setColumn!(matsb,i,coordinates(a)$FFP(GF,dPbig))$M a := a *$FFP(GF,dPbig) root -- the conversion from 'big' to 'small': we can't invert matsb -- directly, because it has degbig rows and degsmall columns and -- may be no square matrix. Therfore we construct a square matrix -- mat from degsmall linear independent rows of matsb and invert it. -- Now we get the conversion matrix 'matbs' for the conversion from -- 'big' to 'small' by putting the columns of mat at the indices -- of the linear independent rows of matsb to columns of matbs. ra:I:=1 -- the rank mat:M:=transpose(row(matsb,1))$M -- has already rank 1 rowind:I:=2 iVec:Vector I:=new(degsmall,1$I)$(Vector I) while ra < degsmall repeat if rank(vertConcat(mat,transpose(row(matsb,rowind))$M)$M)$M > ra then mat:=vertConcat(mat,transpose(row(matsb,rowind))$M)$M ra:=ra+1 iVec.ra := rowind rowind:=rowind + 1 mat:=inverse(mat)$M :: M matbs:=zero(degsmall,degbig)$M for i in 1..degsmall repeat setColumn!(matbs,iVec.i,column(mat,i)$M)$M -- print(matsb::OUT) -- print(matbs::OUT) -- 4) if the 'bigger' field is "normal" we have to compose the -- polynomial conversion with a conversion from polynomial to normal -- between the FFP(GF,dPbig) and FFNBP(GF,dPbig) the 'bigger' -- field. Therefore we compute a conversion matrix 'mat' as in 1) -- Multiplying with the inverse of 'mat' yields the desired -- conversion from polynomial to normal. Multiplying this matrix by -- the above computed 'matsb' we got the matrix for converting form -- 'small polynomial' to 'big normal'. -- set up matrix 'mat' for polynomial to normal if rTbig = "normal" then arr:=reducedQPowers(dPbig)$FFPOLY(GF) mat:=zero(degbig,degbig)$M for i in 1..degbig repeat setColumn!(mat,i,vectorise(arr.(i-1),degbig)$SUP(GF))$M -- old code --a:=basis()$FFP(GF,dPbig).2 -- the root of the def.Polynomial --setColumn!(mat,1,coordinates(a)$FFP(GF,dPbig))$M --for i in 2..degbig repeat -- a:= a **$FFP(GF,dPbig) size()$GF -- setColumn!(mat,i,coordinates(a)$FFP(GF,dPbig))$M -- print(inverse(mat)$M::OUT) matsb:= (inverse(mat)$M :: M) * matsb -- print("inv *.."::OUT) matbs:=matbs * mat -- 5) if the 'smaller' field is "normal" we have first to convert -- from 'small normal' to 'small polynomial', that is from -- FFNBP(GF,dPsmall) to FFP(GF,dPsmall). Therefore we compute a -- conversion matrix 'mat' as in 1). Multiplying with 'mat' -- yields the desired conversion from normal to polynomial. -- Multiplying the above computed 'matsb' with 'mat' we got the -- matrix for converting form 'small normal' to 'big normal'. -- set up matrix 'mat' for normal to polynomial if rTsmall = "normal" then arr:=reducedQPowers(dPsmall)$FFPOLY(GF) mat:=zero(degsmall,degsmall)$M for i in 1..degsmall repeat setColumn!(mat,i,vectorise(arr.(i-1),degsmall)$SUP(GF))$M -- old code --b:FFP(GF,dPsmall):=basis()$FFP(GF,dPsmall).2 --setColumn!(mat,1,coordinates(b)$FFP(GF,dPsmall))$M --for i in 2..degsmall repeat -- b:= b **$FFP(GF,dPsmall) size()$GF -- setColumn!(mat,i,coordinates(b)$FFP(GF,dPsmall))$M -- print(mat::OUT) matsb:= matsb * mat matbs:= (inverse(mat) :: M) * matbs -- now 'matsb' is the corret conversion matrix for 'small' to 'big' -- and 'matbs' the corret one for 'big' to 'small'. -- depending on the above ordering the conversion matrices are -- initialized dPbig =$(SUP GF) defPol2 => conMat1to2 :=matsb conMat2to1 :=matbs -- print(conMat1to2::OUT) -- print(conMat2to1::OUT) -- print("conversion matrices initialized"::OUT) --we finish the function for one case, hence reset initialization flag init? := false conMat1to2 :=matbs conMat2to1 :=matsb -- print(conMat1to2::OUT) -- print(conMat2to1::OUT) -- print("conversion matrices initialized"::OUT) --we finish the function for one case, hence reset initialization flag init? := false coerce(x:F1) == inGroundField?(x)$F1 => retract(x)$F1 :: F2 -- if x is already in GF then we can use a simple coercion defPol1 =$(SUP GF) defPol2 => convertWRTsameDefPol12(x) convertWRTdifferentDefPol12(x) convertWRTsameDefPol12(x:F1) == repType1 = repType2 => x pretend F2 -- same groundfields, same defining polynomials, same -- representation types --> F1 = F2, x is already in F2 repType1 = "cyclic" => x = 0$F1 => 0$F2 -- the SI corresponding to the cyclic representation is the exponent of -- the primitiveElement, therefore we exponentiate the primitiveElement -- of F2 by it. primitiveElement()$F2 **$F2 (x pretend SI) repType2 = "cyclic" => x = 0$F1 => 0$F2 -- to get the exponent, we have to take the discrete logarithm of the -- element in the given field. (discreteLog(x)$F1 pretend SI) pretend F2 -- here one of the representation types is "normal" if init? then initialize() -- here a conversion matrix is necessary, (see initialize()) represents(conMat1to2 *$(Matrix GF) coordinates(x)$F1)$F2 convertWRTdifferentDefPol12(x:F1) == if init? then initialize() -- if we want to convert into a 'smaller' field, we have to test, -- whether the element is in the subfield of the 'bigger' field, which -- corresponds to the 'smaller' field if degree1 > degree2 then if positiveRemainder(degree2,degree(x)$F1)~= 0 then error "coerce: element doesn't belong to smaller field" represents(conMat1to2 *$(Matrix GF) coordinates(x)$F1)$F2 -- the three functions below equal the three functions above up to -- '1' exchanged by '2' in all domain and variable names coerce(x:F2) == inGroundField?(x)$F2 => retract(x)$F2 :: F1 -- if x is already in GF then we can use a simple coercion defPol1 =$(SUP GF) defPol2 => convertWRTsameDefPol21(x) convertWRTdifferentDefPol21(x) convertWRTsameDefPol21(x:F2) == repType1 = repType2 => x pretend F1 -- same groundfields, same defining polynomials, -- same representation types --> F1 = F2, that is: -- x is already in F1 repType2 = "cyclic" => x = 0$F2 => 0$F1 primitiveElement()$F1 **$F1 (x pretend SI) repType1 = "cyclic" => x = 0$F2 => 0$F1 (discreteLog(x)$F2 pretend SI) pretend F1 -- here one of the representation types is "normal" if init? then initialize() represents(conMat2to1 *$(Matrix GF) coordinates(x)$F2)$F1 convertWRTdifferentDefPol21(x:F2) == if init? then initialize() if degree2 > degree1 then if positiveRemainder(degree1,degree(x)$F2)~= 0 then error "coerce: element doesn't belong to smaller field" represents(conMat2to1 *$(Matrix GF) coordinates(x)$F2)$F1 @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package FFHOM FiniteFieldHomomorphisms>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}