\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra fff.spad} \author{Johannes Grabmeier, Alfred Scheerhorn} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \begin{verbatim} -- 12.03.92: AS: generalized createLowComplexityTable -- 25.02.92: AS: added functions: -- createLowComplexityTable: PI -> Union(Vector List TERM,"failed") -- createLowComplexityNormalBasis: PI -> Union(SUP, V L TERM) -- Finite Field Functions \end{verbatim} \section{package FFF FiniteFieldFunctions} <<package FFF FiniteFieldFunctions>>= )abbrev package FFF FiniteFieldFunctions ++ Author: J. Grabmeier, A. Scheerhorn ++ Date Created: 21 March 1991 ++ Date Last Updated: 31 March 1991 ++ Basic Operations: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ References: ++ Lidl, R. & Niederreiter, H., "Finite Fields", ++ Encycl. of Math. 20, Addison-Wesley, 1983 ++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM. ++ AXIOM Technical Report Series, ATR/5 NP2522. ++ Description: ++ FiniteFieldFunctions(GF) is a package with functions ++ concerning finite extension fields of the finite ground field {\em GF}, ++ e.g. Zech logarithms. ++ Keywords: finite field, Zech logarithm, Jacobi logarithm, normal basis FiniteFieldFunctions(GF): Exports == Implementation where GF : FiniteFieldCategory -- the ground field PI ==> PositiveInteger NNI ==> NonNegativeInteger I ==> Integer SI ==> SingleInteger SUP ==> SparseUnivariatePolynomial GF V ==> Vector M ==> Matrix L ==> List OUT ==> OutputForm SAE ==> SimpleAlgebraicExtension ARR ==> PrimitiveArray(SI) TERM ==> Record(value:GF,index:SI) MM ==> ModMonic(GF,SUP) PF ==> PrimeField Exports ==> with createZechTable: SUP -> ARR ++ createZechTable(f) generates a Zech logarithm table for the cyclic ++ group representation of a extension of the ground field by the ++ primitive polynomial {\em f(x)}, i.e. \spad{Z(i)}, ++ defined by {\em x**Z(i) = 1+x**i} is stored at index i. ++ This is needed in particular ++ to perform addition of field elements in finite fields represented ++ in this way. See \spadtype{FFCGP}, \spadtype{FFCGX}. createMultiplicationTable: SUP -> V L TERM ++ createMultiplicationTable(f) generates a multiplication ++ table for the normal basis of the field extension determined ++ by {\em f}. This is needed to perform multiplications ++ between elements represented as coordinate vectors to this basis. ++ See \spadtype{FFNBP}, \spadtype{FFNBX}. createMultiplicationMatrix: V L TERM -> M GF ++ createMultiplicationMatrix(m) forms the multiplication table ++ {\em m} into a matrix over the ground field. -- only useful for the user to visualise the multiplication table -- in a nice form sizeMultiplication: V L TERM -> NNI ++ sizeMultiplication(m) returns the number of entries ++ of the multiplication table {\em m}. -- the time of the multiplication of field elements depends -- on this size createLowComplexityTable: PI -> Union(Vector List TERM,"failed") ++ createLowComplexityTable(n) tries to find ++ a low complexity normal basis of degree {\em n} over {\em GF} ++ and returns its multiplication matrix ++ Fails, if it does not find a low complexity basis createLowComplexityNormalBasis: PI -> Union(SUP, V L TERM) ++ createLowComplexityNormalBasis(n) tries to find a ++ a low complexity normal basis of degree {\em n} over {\em GF} ++ and returns its multiplication matrix ++ If no low complexity basis is found it calls ++ \axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(n) to produce a normal ++ polynomial of degree {\em n} over {\em GF} Implementation ==> add createLowComplexityNormalBasis(n) == (u:=createLowComplexityTable(n)) case "failed" => createNormalPoly(n)$FiniteFieldPolynomialPackage(GF) u::(V L TERM) -- try to find a low complexity normal basis multiplication table -- of the field of extension degree n -- the algorithm is from: -- Wassermann A., Konstruktion von Normalbasen, -- Bayreuther Mathematische Schriften 31 (1989),1-9. createLowComplexityTable(n) == q:=size()$GF -- this algorithm works only for prime fields p:=characteristic()$GF -- search of a suitable parameter k k:NNI:=0 a:NNI t1: PF(k*n+1) -- all that matters is the syntax of the type for i in 1..n-1 while (k=0) repeat if prime?(i*n+1) and not(p = (i*n+1)) then primitive?(q::PF(i*n+1))$PF(i*n+1) => a := 1 k:=i t1:PF(k*n+1):=(q::PF(k*n+1))**n gcd(n,a:=discreteLog(q::PF(n*i+1))$PF(n*i+1))$I = 1 => k:=i t1:=primitiveElement()$PF(k*n+1)**n k = 0 => "failed" -- initialize some start values multmat:M PF(p):=zero(n,n) p1:=(k*n+1) pkn:=q::PF(p1) t:=t1 pretend PF(p1) if odd?(k) then jt:I:=(n quo 2)+1 vt:I:=positiveRemainder((k-a) quo 2,k)+1 else jt:I:=1 vt:I:=(k quo 2)+1 -- compute matrix vec:Vector I:=zero(p1 pretend NNI) for x in 1..k repeat for l in 1..n repeat vec.((t**(x-1) * pkn**(l-1)) pretend Integer+1):=_ positiveRemainder(l,p1) lvj:M I:=zero(k::NNI,n) for v in 1..k repeat for j in 1..n repeat if (j~=jt) or (v~=vt) then help:PF(p1):=t**(v-1)*pkn**(j-1)+1@PF(p1) setelt(lvj,v,j,vec.(help pretend I +1)) for j in 1..n repeat if j~=jt then for v in 1..k repeat lvjh:=elt(lvj,v,j) setelt(multmat,j,lvjh,elt(multmat,j,lvjh)+1) for i in 1..n repeat setelt(multmat,jt,i,positiveRemainder(-k,p)::PF(p)) for v in 1..k repeat if v~=vt then lvjh:=elt(lvj,v,jt) setelt(multmat,jt,lvjh,elt(multmat,jt,lvjh)+1) -- multmat m:=nrows(multmat)$(M PF(p)) multtable:V L TERM:=new(m,nil()$(L TERM))$(V L TERM) for i in 1..m repeat l:L TERM:=nil()$(L TERM) v:V PF(p):=row(multmat,i) for j in (1::I)..(m::I) repeat if (v.j ~= 0) then -- take -v.j to get trace 1 instead of -1 term:TERM:=[(convert(-v.j)@I)::GF,(j-2) pretend SI]$TERM l:=cons(term,l)$(L TERM) qsetelt_!(multtable,i,copy l)$(V L TERM) multtable sizeMultiplication(m) == s:NNI:=0 for i in 1..#m repeat s := s + #(m.i) s createMultiplicationTable(f:SUP) == sizeGF:NNI:=size()$GF -- the size of the ground field m:PI:=degree(f)$SUP pretend PI m=1 => [[[-coefficient(f,0)$SUP,(-1)::SI]$TERM]$(L TERM)]::(V L TERM) m1:I:=m-1 -- initialize basis change matrices setPoly(f)$MM e:=reduce(monomial(1,1)$SUP)$MM ** sizeGF w:=1$MM qpow:PrimitiveArray(MM):=new(m,0) qpow.0:=1$MM for i in 1..m1 repeat qpow.i:=(w:=w*e) -- qpow.i = x**(i*q) qexp:PrimitiveArray(MM):=new(m,0) qexp.0:=reduce(monomial(1,1)$SUP)$MM mat:M GF:=zero(m,m)$(M GF) qsetelt_!(mat,2,1,1$GF)$(M GF) h:=qpow.1 qexp.1:=h setColumn_!(mat,2,Vectorise(h)$MM)$(M GF) for i in 2..m1 repeat g:=0$MM while h ~= 0 repeat g:=g + leadingCoefficient(h) * qpow.degree(h)$MM h:=reductum(h)$MM qexp.i:=g setColumn_!(mat,i+1,Vectorise(h:=g)$MM)$(M GF) -- loop invariant: qexp.i = x**(q**i) mat1:=inverse(mat)$(M GF) mat1 = "failed" => error "createMultiplicationTable: polynomial must be normal" mat:=mat1 :: (M GF) -- initialize multiplication table multtable:V L TERM:=new(m,nil()$(L TERM))$(V L TERM) for i in 1..m repeat l:L TERM:=nil()$(L TERM) v:V GF:=mat *$(M GF) Vectorise(qexp.(i-1) *$MM qexp.0)$MM for j in (1::SI)..(m::SI) repeat if (v.j ~= 0$GF) then term:TERM:=[(v.j),j-(2::SI)]$TERM l:=cons(term,l)$(L TERM) qsetelt_!(multtable,i,copy l)$(V L TERM) multtable createZechTable(f:SUP) == sizeGF:NNI:=size()$GF -- the size of the ground field m:=degree(f)$SUP::PI qm1:SI:=(sizeGF ** m -1) pretend SI zechlog:ARR:=new(((sizeGF ** m + 1) quo 2)::NNI,-1::SI)$ARR helparr:ARR:=new(sizeGF ** m::NNI,0$SI)$ARR primElement:=reduce(monomial(1,1)$SUP)$SAE(GF,SUP,f) a:=primElement for i in 1..qm1-1 repeat helparr.(lookup(a -$SAE(GF,SUP,f) 1$SAE(GF,SUP,f)_ )$SAE(GF,SUP,f)):=i::SI a:=a * primElement characteristic() = 2 => a:=primElement for i in 1..(qm1 quo 2) repeat zechlog.i:=helparr.lookup(a)$SAE(GF,SUP,f) a:=a * primElement zechlog a:=1$SAE(GF,SUP,f) for i in 0..((qm1-2) quo 2) repeat zechlog.i:=helparr.lookup(a)$SAE(GF,SUP,f) a:=a * primElement zechlog createMultiplicationMatrix(m) == n:NNI:=#m mat:M GF:=zero(n,n)$(M GF) for i in 1..n repeat for t in m.i repeat qsetelt_!(mat,i,t.index+2,t.value) mat @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package FFF FiniteFieldFunctions>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}