\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra ffcg.spad} \author{Johannes Grabmeier, Alfred Scheerhorn} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \begin{verbatim} -- 28.01.93: AS and JG: setting of initzech? and initelt? flags in -- functions initializeZech and initializeElt put at the -- end to avoid errors with interruption. -- factorsOfCyclicGroupSize() changed. -- 12.05.92: JG: long lines -- 25.02.92: AS: added functions order and primitive? -- 19.02.92: AS: implementation of basis:PI -> Vector $ changed . -- 17.02.92: AS: implementation of coordinates corrected. -- 10.02.92: AS: implementation of coerce:GF -> $ corrected. -- 05.08.91: JG: AS implementation of missing functions in FFC and FAXF -- finite field represented by it's cyclic group and 'zero' as an -- extra element \end{verbatim} \section{domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial} <<domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial>>= import SingleInteger import PrimitiveArray )abbrev domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial ++ Authors: J.Grabmeier, A.Scheerhorn ++ Date Created: 26.03.1991 ++ Date Last Updated: 31 March 1991 ++ Basic Operations: ++ Related Constructors: FiniteFieldFunctions ++ Also See: FiniteFieldExtensionByPolynomial, ++ FiniteFieldNormalBasisExtensionByPolynomial ++ AMS Classifications: ++ Keywords: finite field, primitive elements, cyclic group ++ References: ++ R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and ++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4 ++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM. ++ AXIOM Technical Report Series, ATR/5 NP2522. ++ Description: ++ FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol) implements a ++ finite extension field of the ground field {\em GF}. Its elements are ++ represented by powers of a primitive element, i.e. a generator of the ++ multiplicative (cyclic) group. As primitive ++ element we choose the root of the extension polynomial {\em defpol}, ++ which MUST be primitive (user responsibility). Zech logarithms are stored ++ in a table of size half of the field size, and use \spadtype{SingleInteger} ++ for representing field elements, hence, there are restrictions ++ on the size of the field. FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol):_ Exports == Implementation where GF : FiniteFieldCategory -- the ground field defpol: SparseUnivariatePolynomial GF -- the extension polynomial -- the root of defpol is used as the primitive element PI ==> PositiveInteger NNI ==> NonNegativeInteger I ==> Integer SI ==> SingleInteger SUP ==> SparseUnivariatePolynomial SAE ==> SimpleAlgebraicExtension(GF,SUP GF,defpol) V ==> Vector GF FFP ==> FiniteFieldExtensionByPolynomial(GF,defpol) FFF ==> FiniteFieldFunctions(GF) OUT ==> OutputForm ARR ==> PrimitiveArray(SI) TBL ==> Table(PI,NNI) Exports ==> FiniteAlgebraicExtensionField(GF) with getZechTable:() -> ARR ++ getZechTable() returns the zech logarithm table of the field ++ it is used to perform additions in the field quickly. Implementation ==> add -- global variables =================================================== Rep:= SI -- elements are represented by small integers in the range -- (-1)..(size()-2). The (-1) representing the field element zero, -- the other small integers representing the corresponding power -- of the primitive element, the root of the defining polynomial -- it would be very nice if we could use the representation -- Rep:= Union("zero", IntegerMod(size()$GF ** degree(defpol) -1)), -- why doesn't the compiler like this ? extdeg:NNI :=degree(defpol)$(SUP GF)::NNI -- the extension degree sizeFF:NNI:=(size()$GF ** extdeg) pretend NNI -- the size of the field if sizeFF > 2**20 then error "field too large for this representation" sizeCG:SI:=(sizeFF - 1) pretend SI -- the order of the cyclic group sizeFG:SI:=(sizeCG quo (size()$GF-1)) pretend SI -- the order of the factor group zechlog:ARR:=new(((sizeFF+1) quo 2)::NNI,-1::SI)$ARR -- the table for the zech logarithm alpha :=new()$Symbol :: OutputForm -- get a new symbol for the output representation of -- the elements primEltGF:GF:= odd?(extdeg)$I => -$GF coefficient(defpol,0)$(SUP GF) coefficient(defpol,0)$(SUP GF) -- the corresponding primitive element of the groundfield -- equals the trace of the primitive element w.r.t. the groundfield facOfGroupSize := nil()$(List Record(factor:Integer,exponent:Integer)) -- the factorization of sizeCG initzech?:Boolean:=true -- gets false after initialization of the zech logarithm array initelt?:Boolean:=true -- gets false after initialization of the normal element normalElt:SI:=0 -- the global variable containing a normal element -- functions ========================================================== -- for completeness we have to give a dummy implementation for -- 'tableForDiscreteLogarithm', although this function is not -- necessary in the cyclic group representation case tableForDiscreteLogarithm(fac) == table()$TBL getZechTable() == zechlog initializeZech:() -> Void initializeElt: () -> Void order(x:$):PI == zero?(x) => error"order: order of zero undefined" (sizeCG quo gcd(sizeCG,x pretend NNI))::PI primitive?(x:$) == zero?(x) or one?(x) => false gcd(x::Rep,sizeCG)$Rep = 1$Rep => true false coordinates(x:$) == x=0 => new(extdeg,0)$(Vector GF) primElement:SAE:=convert(monomial(1,1)$(SUP GF))$SAE -- the primitive element in the corresponding algebraic extension coordinates(primElement **$SAE (x pretend SI))$SAE x:$ + y:$ == if initzech? then initializeZech() zero? x => y zero? y => x d:Rep:=positiveRemainder(y -$Rep x,sizeCG)$Rep (d pretend SI) <= shift(sizeCG,-$SI (1$SI)) => zechlog.(d pretend SI) =$SI -1::SI => 0 addmod(x,zechlog.(d pretend SI) pretend Rep,sizeCG)$Rep --d:Rep:=positiveRemainder(x -$Rep y,sizeCG)$Rep d:Rep:=(sizeCG -$SI d)::Rep addmod(y,zechlog.(d pretend SI) pretend Rep,sizeCG)$Rep --positiveRemainder(x +$Rep zechlog.(d pretend SI) -$Rep d,sizeCG)$Rep initializeZech() == zechlog:=createZechTable(defpol)$FFF -- set initialization flag initzech? := false basis(n:PI) == extensionDegree() rem n ~= 0 => error("argument must divide extension degree") m:=sizeCG quo (size()$GF**n-1) [index((1+i*m) ::PI) for i in 0..(n-1)]::Vector $ n:I * x:$ == ((n::GF)::$) * x minimalPolynomial(a) == f:SUP $:=monomial(1,1)$(SUP $) - monomial(a,0)$(SUP $) u:$:=Frobenius(a) while not(u = a) repeat f:=f * (monomial(1,1)$(SUP $) - monomial(u,0)$(SUP $)) u:=Frobenius(u) p:SUP GF:=0$(SUP GF) while not zero?(f)$(SUP $) repeat g:GF:=retract(leadingCoefficient(f)$(SUP $)) p:=p+monomial(g,_ degree(f)$(SUP $))$(SUP GF) f:=reductum(f)$(SUP $) p factorsOfCyclicGroupSize() == if empty? facOfGroupSize then initializeElt() facOfGroupSize representationType() == "cyclic" definingPolynomial() == defpol random() == positiveRemainder(random()$Rep,sizeFF pretend Rep)$Rep -$Rep 1$Rep represents(v) == u:FFP:=represents(v)$FFP u =$FFP 0$FFP => 0 discreteLog(u)$FFP pretend Rep coerce(e:GF):$ == zero?(e)$GF => 0 log:I:=discreteLog(primEltGF,e)$GF::NNI *$I sizeFG -- version before 10.20.92: log pretend Rep -- 1$GF is coerced to sizeCG pretend Rep by old version -- now 1$GF is coerced to 0$Rep which is correct. positiveRemainder(log,sizeCG) pretend Rep retractIfCan(x:$) == zero? x => 0$GF u:= (x::Rep) exquo$Rep (sizeFG pretend Rep) u = "failed" => "failed" primEltGF **$GF ((u::$) pretend SI) retract(x:$) == a:=retractIfCan(x) a="failed" => error "element not in groundfield" a :: GF basis() == [index(i :: PI) for i in 1..extdeg]::Vector $ inGroundField?(x) == zero? x=> true positiveRemainder(x::Rep,sizeFG pretend Rep)$Rep =$Rep 0$Rep => true false discreteLog(b:$,x:$) == zero? x => "failed" e:= extendedEuclidean(b,sizeCG,x)$Rep e = "failed" => "failed" e1:Record(coef1:$,coef2:$) := e :: Record(coef1:$,coef2:$) positiveRemainder(e1.coef1,sizeCG)$Rep pretend NNI - x:$ == zero? x => 0 characteristic$% =$I 2 => x addmod(x,shift(sizeCG,-1)$SI pretend Rep,sizeCG) generator() == 1$SI createPrimitiveElement() == 1$SI primitiveElement() == 1$SI discreteLog(x:$) == zero? x => error "discrete logarithm error" x pretend NNI normalElement() == if initelt? then initializeElt() normalElt::$ initializeElt() == facOfGroupSize := factors(factor(sizeCG)$Integer) normalElt:=createNormalElement() pretend SI initelt?:=false extensionDegree(): PositiveInteger == extdeg pretend PI characteristic == characteristic$GF lookup(x:$) == x =$Rep (-$Rep 1$Rep) => sizeFF pretend PI (x +$Rep 1$Rep) pretend PI index(a:PI) == positiveRemainder(a,sizeFF)$I pretend Rep -$Rep 1$Rep 0 == (-$Rep 1$Rep) 1 == 0$Rep -- to get a "exponent like" output form coerce(x:$):OUT == x =$Rep (-$Rep 1$Rep) => "0"::OUT x =$Rep 0$Rep => "1"::OUT y:I:=lookup(x)-1 alpha **$OUT (y::OUT) x:$ = y:$ == x =$Rep y x:$ * y:$ == x = 0 => 0 y = 0 => 0 addmod(x,y,sizeCG)$Rep a:GF * x:$ == coerce(a)@$ * x x:$/a:GF == x/coerce(a)@$ -- x:$ / a:GF == -- a = 0$GF => error "division by zero" -- x * inv(coerce(a)) inv(x:$) == zero?(x) => error "inv: not invertible" one?(x) => 1 sizeCG -$Rep x x:$ ** n:PI == x ** n::I x:$ ** n:NNI == x ** n::I x:$ ** n:I == m:Rep:=positiveRemainder(n,sizeCG)$I pretend Rep m =$Rep 0$Rep => 1 x = 0 => 0 mulmod(m,x,sizeCG::Rep)$Rep @ \section{domain FFCGX FiniteFieldCyclicGroupExtension} <<domain FFCGX FiniteFieldCyclicGroupExtension>>= )abbrev domain FFCGX FiniteFieldCyclicGroupExtension ++ Authors: J.Grabmeier, A.Scheerhorn ++ Date Created: 04.04.1991 ++ Date Last Updated: ++ Basic Operations: ++ Related Constructors: FiniteFieldCyclicGroupExtensionByPolynomial, ++ FiniteFieldPolynomialPackage ++ Also See: FiniteFieldExtension, FiniteFieldNormalBasisExtension ++ AMS Classifications: ++ Keywords: finite field, primitive elements, cyclic group ++ References: ++ R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and ++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4 ++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM. ++ AXIOM Technical Report Series, ATR/5 NP2522. ++ Description: ++ FiniteFieldCyclicGroupExtension(GF,n) implements a extension of degree n ++ over the ground field {\em GF}. Its elements are represented by powers of ++ a primitive element, i.e. a generator of the multiplicative (cyclic) group. ++ As primitive element we choose the root of the extension polynomial, which ++ is created by {\em createPrimitivePoly} from ++ \spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored ++ in a table of size half of the field size, and use \spadtype{SingleInteger} ++ for representing field elements, hence, there are restrictions ++ on the size of the field. FiniteFieldCyclicGroupExtension(GF,extdeg):_ Exports == Implementation where GF : FiniteFieldCategory extdeg : PositiveInteger PI ==> PositiveInteger FFPOLY ==> FiniteFieldPolynomialPackage(GF) SI ==> SingleInteger Exports ==> FiniteAlgebraicExtensionField(GF) with getZechTable:() -> PrimitiveArray(SingleInteger) ++ getZechTable() returns the zech logarithm table of the field. ++ This table is used to perform additions in the field quickly. Implementation ==> FiniteFieldCyclicGroupExtensionByPolynomial(GF,_ createPrimitivePoly(extdeg)$FFPOLY) @ \section{domain FFCG FiniteFieldCyclicGroup} <<domain FFCG FiniteFieldCyclicGroup>>= )abbrev domain FFCG FiniteFieldCyclicGroup ++ Authors: J.Grabmeier, A.Scheerhorn ++ Date Created: 04.04.1991 ++ Date Last Updated: ++ Basic Operations: ++ Related Constructors: FiniteFieldCyclicGroupExtensionByPolynomial, ++ FiniteFieldPolynomialPackage ++ Also See: FiniteField, FiniteFieldNormalBasis ++ AMS Classifications: ++ Keywords: finite field, primitive elements, cyclic group ++ References: ++ R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and ++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4 ++ Description: ++ FiniteFieldCyclicGroup(p,n) implements a finite field extension of degee n ++ over the prime field with p elements. Its elements are represented by ++ powers of a primitive element, i.e. a generator of the multiplicative ++ (cyclic) group. As primitive element we choose the root of the extension ++ polynomial, which is created by {\em createPrimitivePoly} from ++ \spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored ++ in a table of size half of the field size, and use \spadtype{SingleInteger} ++ for representing field elements, hence, there are restrictions ++ on the size of the field. FiniteFieldCyclicGroup(p,extdeg):_ Exports == Implementation where p : PositiveInteger extdeg : PositiveInteger PI ==> PositiveInteger FFPOLY ==> FiniteFieldPolynomialPackage(PrimeField(p)) SI ==> SingleInteger Exports ==> FiniteAlgebraicExtensionField(PrimeField(p)) with getZechTable:() -> PrimitiveArray(SingleInteger) ++ getZechTable() returns the zech logarithm table of the field. ++ This table is used to perform additions in the field quickly. Implementation ==> FiniteFieldCyclicGroupExtensionByPolynomial(PrimeField(p),_ createPrimitivePoly(extdeg)$FFPOLY) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial>> <<domain FFCGX FiniteFieldCyclicGroupExtension>> <<domain FFCG FiniteFieldCyclicGroup>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}