\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra ffcg.spad}
\author{Johannes Grabmeier, Alfred Scheerhorn}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
-- 28.01.93: AS and JG: setting of initzech? and initelt? flags in
--    functions initializeZech and initializeElt put at the
--    end to avoid errors with interruption.
--    factorsOfCyclicGroupSize() changed.
-- 12.05.92: JG: long lines
-- 25.02.92: AS: added functions order and primitive?
-- 19.02.92: AS: implementation of basis:PI -> Vector $ changed .
-- 17.02.92: AS: implementation of coordinates corrected.
-- 10.02.92: AS: implementation of coerce:GF -> $ corrected.
-- 05.08.91: JG: AS implementation of missing functions in FFC and FAXF


-- finite field represented by it's cyclic group and 'zero' as an
-- extra element
\end{verbatim}

\section{domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial}

<<domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial>>=
import SingleInteger
import PrimitiveArray
)abbrev domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated: 31 March 1991
++ Basic Operations:
++ Related Constructors: FiniteFieldFunctions
++ Also See: FiniteFieldExtensionByPolynomial,
++  FiniteFieldNormalBasisExtensionByPolynomial
++ AMS Classifications:
++ Keywords: finite field, primitive elements, cyclic group
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol)  implements a
++  finite extension field of the ground field {\em GF}. Its elements are
++  represented by powers of a primitive element, i.e. a generator of the
++  multiplicative (cyclic) group. As primitive
++  element we choose the root of the extension polynomial {\em defpol},
++  which MUST be primitive (user responsibility). Zech logarithms are stored
++  in a table of size half of the field size, and use \spadtype{SingleInteger}
++  for representing field elements, hence, there are restrictions
++  on the size of the field.


FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol):_
  Exports == Implementation where
  GF    : FiniteFieldCategory                -- the ground field
  defpol: SparseUnivariatePolynomial GF      -- the extension polynomial
  -- the root of defpol is used as the primitive element

  PI    ==> PositiveInteger
  NNI   ==> NonNegativeInteger
  I     ==> Integer
  SI    ==> SingleInteger
  SUP   ==> SparseUnivariatePolynomial
  SAE   ==> SimpleAlgebraicExtension(GF,SUP GF,defpol)
  V     ==> Vector GF
  FFP   ==> FiniteFieldExtensionByPolynomial(GF,defpol)
  FFF   ==> FiniteFieldFunctions(GF)
  OUT   ==> OutputForm
  ARR   ==> PrimitiveArray(SI)
  TBL   ==> Table(PI,NNI)


  Exports ==> FiniteAlgebraicExtensionField(GF)  with

    getZechTable:() -> ARR
      ++ getZechTable() returns the zech logarithm table of the field
      ++ it is used to perform additions in the field quickly.
  Implementation ==>  add

-- global variables ===================================================

    Rep:= SI
    -- elements are represented by small integers in the range
    -- (-1)..(size()-2). The (-1) representing the field element zero,
    -- the other small integers representing the corresponding power
    -- of the primitive element, the root of the defining polynomial

    -- it would be very nice if we could use the representation
    -- Rep:= Union("zero", IntegerMod(size()$GF ** degree(defpol) -1)),
    -- why doesn't the compiler like this ?

    extdeg:NNI  :=degree(defpol)$(SUP GF)::NNI
    -- the extension degree

    sizeFF:NNI:=(size()$GF ** extdeg) pretend NNI
    -- the size of the field

    if sizeFF > 2**20 then
      error "field too large for this representation"

    sizeCG:SI:=(sizeFF - 1) pretend SI
    -- the order of the cyclic group

    sizeFG:SI:=(sizeCG quo (size()$GF-1)) pretend SI
    -- the order of the factor group


    zechlog:ARR:=new(((sizeFF+1) quo 2)::NNI,-1::SI)$ARR
    -- the table for the zech logarithm

    alpha :=new()$Symbol :: OutputForm
    -- get a new symbol for the output representation of
    -- the elements

    primEltGF:GF:=
      odd?(extdeg)$I => -$GF coefficient(defpol,0)$(SUP GF)
      coefficient(defpol,0)$(SUP GF)
    -- the corresponding primitive element of the groundfield
    -- equals the trace of the primitive element w.r.t. the groundfield

    facOfGroupSize := nil()$(List Record(factor:Integer,exponent:Integer))
    -- the factorization of sizeCG

    initzech?:Boolean:=true
    -- gets false after initialization of the zech logarithm array

    initelt?:Boolean:=true
    -- gets false after initialization of the normal element

    normalElt:SI:=0
    -- the global variable containing a normal element

-- functions ==========================================================

    -- for completeness we have to give a dummy implementation for
    -- 'tableForDiscreteLogarithm', although this function is not
    -- necessary in the cyclic group representation case

    tableForDiscreteLogarithm(fac) == table()$TBL


    getZechTable() == zechlog
    initializeZech:() -> Void
    initializeElt: () -> Void

    order(x:$):PI ==
      zero?(x) =>
        error"order: order of zero undefined"
      (sizeCG quo gcd(sizeCG,x pretend NNI))::PI

    primitive?(x:$) ==
      zero?(x) or one?(x) => false
      gcd(x::Rep,sizeCG)$Rep = 1$Rep => true
      false

    coordinates(x:$) ==
      x=0 => new(extdeg,0)$(Vector GF)
      primElement:SAE:=convert(monomial(1,1)$(SUP GF))$SAE
-- the primitive element in the corresponding algebraic extension
      coordinates(primElement **$SAE (x pretend SI))$SAE

    x:$ + y:$ ==
      if initzech? then initializeZech()
      zero? x => y
      zero? y => x
      d:Rep:=positiveRemainder(y -$Rep x,sizeCG)$Rep
      (d pretend SI) <= shift(sizeCG,-$SI (1$SI)) =>
        zechlog.(d pretend SI) =$SI -1::SI => 0
        addmod(x,zechlog.(d pretend SI) pretend Rep,sizeCG)$Rep
      --d:Rep:=positiveRemainder(x -$Rep y,sizeCG)$Rep
      d:Rep:=(sizeCG -$SI d)::Rep
      addmod(y,zechlog.(d pretend SI) pretend Rep,sizeCG)$Rep
      --positiveRemainder(x +$Rep zechlog.(d pretend SI) -$Rep d,sizeCG)$Rep


    initializeZech() ==
      zechlog:=createZechTable(defpol)$FFF
      -- set initialization flag
      initzech? := false

    basis(n:PI) ==
      extensionDegree() rem n ~= 0 =>
        error("argument must divide extension degree")
      m:=sizeCG quo (size()$GF**n-1)
      [index((1+i*m) ::PI) for i in 0..(n-1)]::Vector $

    n:I * x:$ == ((n::GF)::$) * x

    minimalPolynomial(a) ==
      f:SUP $:=monomial(1,1)$(SUP $) - monomial(a,0)$(SUP $)
      u:$:=Frobenius(a)
      while not(u = a) repeat
        f:=f * (monomial(1,1)$(SUP $) - monomial(u,0)$(SUP $))
        u:=Frobenius(u)
      p:SUP GF:=0$(SUP GF)
      while not zero?(f)$(SUP $) repeat
        g:GF:=retract(leadingCoefficient(f)$(SUP $))
        p:=p+monomial(g,_
                      degree(f)$(SUP $))$(SUP GF)
        f:=reductum(f)$(SUP $)
      p

    factorsOfCyclicGroupSize() ==
      if empty? facOfGroupSize then initializeElt()
      facOfGroupSize

    representationType() == "cyclic"

    definingPolynomial() == defpol

    random() ==
      positiveRemainder(random()$Rep,sizeFF pretend Rep)$Rep -$Rep 1$Rep

    represents(v) ==
      u:FFP:=represents(v)$FFP
      u =$FFP 0$FFP => 0
      discreteLog(u)$FFP pretend Rep



    coerce(e:GF):$ ==
      zero?(e)$GF => 0
      log:I:=discreteLog(primEltGF,e)$GF::NNI *$I sizeFG
      -- version before 10.20.92: log pretend Rep
      -- 1$GF is coerced to sizeCG pretend Rep by old version
      -- now 1$GF is coerced to 0$Rep which is correct.
      positiveRemainder(log,sizeCG) pretend Rep


    retractIfCan(x:$) ==
      zero? x => 0$GF
      u:= (x::Rep) exquo$Rep (sizeFG pretend Rep)
      u = "failed" => "failed"
      primEltGF **$GF ((u::$) pretend SI)

    retract(x:$) ==
      a:=retractIfCan(x)
      a="failed" => error "element not in groundfield"
      a :: GF

    basis() == [index(i :: PI) for i in 1..extdeg]::Vector $


    inGroundField?(x) ==
      zero? x=> true
      positiveRemainder(x::Rep,sizeFG pretend Rep)$Rep =$Rep 0$Rep => true
      false

    discreteLog(b:$,x:$) ==
      zero? x => "failed"
      e:= extendedEuclidean(b,sizeCG,x)$Rep
      e = "failed" => "failed"
      e1:Record(coef1:$,coef2:$) := e :: Record(coef1:$,coef2:$)
      positiveRemainder(e1.coef1,sizeCG)$Rep pretend NNI

    - x:$ ==
        zero? x => 0
        characteristic$% =$I 2 => x
        addmod(x,shift(sizeCG,-1)$SI pretend Rep,sizeCG)

    generator() == 1$SI
    createPrimitiveElement() == 1$SI
    primitiveElement() == 1$SI

    discreteLog(x:$) ==
      zero? x => error "discrete logarithm error"
      x pretend NNI

    normalElement() ==
      if initelt? then initializeElt()
      normalElt::$

    initializeElt() ==
      facOfGroupSize := factors(factor(sizeCG)$Integer)
      normalElt:=createNormalElement() pretend SI
      initelt?:=false

    extensionDegree(): PositiveInteger == extdeg pretend PI

    characteristic == characteristic$GF

    lookup(x:$) ==
      x =$Rep (-$Rep 1$Rep) => sizeFF pretend PI
      (x +$Rep 1$Rep) pretend PI

    index(a:PI) ==
      positiveRemainder(a,sizeFF)$I pretend Rep -$Rep 1$Rep

    0 == (-$Rep 1$Rep)

    1 == 0$Rep

-- to get a "exponent like" output form
    coerce(x:$):OUT ==
      x =$Rep (-$Rep 1$Rep) => "0"::OUT
      x =$Rep 0$Rep => "1"::OUT
      y:I:=lookup(x)-1
      alpha **$OUT (y::OUT)

    x:$ = y:$ ==  x =$Rep y

    x:$ * y:$ ==
      x = 0 => 0
      y = 0 => 0
      addmod(x,y,sizeCG)$Rep

    a:GF * x:$ == coerce(a)@$ * x
    x:$/a:GF == x/coerce(a)@$

--    x:$ / a:GF ==
--      a = 0$GF => error "division by zero"
--      x * inv(coerce(a))

    inv(x:$)  ==
      zero?(x) => error "inv: not invertible"
      one?(x) => 1
      sizeCG -$Rep x

    x:$ ** n:PI == x ** n::I

    x:$ ** n:NNI == x ** n::I

    x:$ ** n:I ==
      m:Rep:=positiveRemainder(n,sizeCG)$I pretend Rep
      m =$Rep 0$Rep => 1
      x = 0 => 0
      mulmod(m,x,sizeCG::Rep)$Rep

@
\section{domain FFCGX FiniteFieldCyclicGroupExtension}
<<domain FFCGX FiniteFieldCyclicGroupExtension>>=
)abbrev domain FFCGX FiniteFieldCyclicGroupExtension
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 04.04.1991
++ Date Last Updated:
++ Basic Operations:
++ Related Constructors:  FiniteFieldCyclicGroupExtensionByPolynomial,
++  FiniteFieldPolynomialPackage
++ Also See: FiniteFieldExtension, FiniteFieldNormalBasisExtension
++ AMS Classifications:
++ Keywords: finite field, primitive elements, cyclic group
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteFieldCyclicGroupExtension(GF,n)  implements a extension of degree n
++  over the ground field {\em GF}. Its elements are represented by powers of
++  a primitive element, i.e. a generator of the multiplicative (cyclic) group.
++  As primitive element we choose the root of the extension polynomial, which
++  is created by {\em createPrimitivePoly} from
++  \spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored
++  in a table of size half of the field size, and use \spadtype{SingleInteger}
++  for representing field elements, hence, there are restrictions
++  on the size of the field.


FiniteFieldCyclicGroupExtension(GF,extdeg):_
  Exports == Implementation where
  GF       : FiniteFieldCategory
  extdeg   : PositiveInteger
  PI       ==> PositiveInteger
  FFPOLY         ==> FiniteFieldPolynomialPackage(GF)
  SI       ==> SingleInteger
  Exports  ==> FiniteAlgebraicExtensionField(GF) with
    getZechTable:() -> PrimitiveArray(SingleInteger)
      ++ getZechTable() returns the zech logarithm table of the field.
      ++ This table is used to perform additions in the field quickly.
  Implementation ==> FiniteFieldCyclicGroupExtensionByPolynomial(GF,_
                          createPrimitivePoly(extdeg)$FFPOLY)

@
\section{domain FFCG FiniteFieldCyclicGroup}
<<domain FFCG FiniteFieldCyclicGroup>>=
)abbrev domain FFCG FiniteFieldCyclicGroup
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 04.04.1991
++ Date Last Updated:
++ Basic Operations:
++ Related Constructors:  FiniteFieldCyclicGroupExtensionByPolynomial,
++  FiniteFieldPolynomialPackage
++ Also See: FiniteField, FiniteFieldNormalBasis
++ AMS Classifications:
++ Keywords: finite field, primitive elements, cyclic group
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++ Description:
++  FiniteFieldCyclicGroup(p,n) implements a finite field extension of degee n
++  over the prime field with p elements. Its elements are represented by
++  powers of a primitive element, i.e. a generator of the multiplicative
++  (cyclic) group. As primitive element we choose the root of the extension
++  polynomial, which is created by {\em createPrimitivePoly} from
++  \spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored
++  in a table of size half of the field size, and use \spadtype{SingleInteger}
++  for representing field elements, hence, there are restrictions
++  on the size of the field.

FiniteFieldCyclicGroup(p,extdeg):_
  Exports == Implementation where
  p : PositiveInteger
  extdeg   : PositiveInteger
  PI       ==> PositiveInteger
  FFPOLY         ==> FiniteFieldPolynomialPackage(PrimeField(p))
  SI       ==> SingleInteger
  Exports  ==> FiniteAlgebraicExtensionField(PrimeField(p)) with
    getZechTable:() -> PrimitiveArray(SingleInteger)
      ++ getZechTable() returns the zech logarithm table of the field.
      ++ This table is used to perform additions in the field quickly.
  Implementation ==> FiniteFieldCyclicGroupExtensionByPolynomial(PrimeField(p),_
                          createPrimitivePoly(extdeg)$FFPOLY)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial>>
<<domain FFCGX FiniteFieldCyclicGroupExtension>>
<<domain FFCG FiniteFieldCyclicGroup>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}