\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra exprode.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package EXPRODE ExpressionSpaceODESolver} <<package EXPRODE ExpressionSpaceODESolver>>= )abbrev package EXPRODE ExpressionSpaceODESolver ++ Taylor series solutions of ODE's ++ Author: Manuel Bronstein ++ Date Created: 5 Mar 1990 ++ Date Last Updated: 30 September 1993 ++ Description: Taylor series solutions of explicit ODE's; ++ Keywords: differential equation, ODE, Taylor series ExpressionSpaceODESolver(R, F): Exports == Implementation where R: Join(IntegralDomain, ConvertibleTo InputForm) F: FunctionSpace R K ==> Kernel F P ==> SparseMultivariatePolynomial(R, K) OP ==> BasicOperator SY ==> Symbol UTS ==> UnivariateTaylorSeries(F, x, center) MKF ==> MakeUnaryCompiledFunction(F, UTS, UTS) MKL ==> MakeUnaryCompiledFunction(F, List UTS, UTS) A1 ==> AnyFunctions1(UTS) AL1 ==> AnyFunctions1(List UTS) EQ ==> Equation F ODE ==> UnivariateTaylorSeriesODESolver(F, UTS) Exports ==> with seriesSolve: (EQ, OP, EQ, EQ) -> Any ++ seriesSolve(eq,y,x=a, y a = b) returns a Taylor series solution ++ of eq around x = a with initial condition \spad{y(a) = b}. ++ Note: eq must be of the form ++ \spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}. seriesSolve: (EQ, OP, EQ, List F) -> Any ++ seriesSolve(eq,y,x=a,[b0,...,b(n-1)]) returns a Taylor series ++ solution of eq around \spad{x = a} with initial conditions ++ \spad{y(a) = b0}, \spad{y'(a) = b1}, ++ \spad{y''(a) = b2}, ...,\spad{y(n-1)(a) = b(n-1)} ++ eq must be of the form ++ \spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + ++ g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}. seriesSolve: (List EQ, List OP, EQ, List EQ) -> Any ++ seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn]) ++ returns a taylor series solution of \spad{[eq1,...,eqn]} around ++ \spad{x = a} with initial conditions \spad{yi(a) = bi}. ++ Note: eqi must be of the form ++ \spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + ++ gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}. seriesSolve: (List EQ, List OP, EQ, List F) -> Any ++ seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn]) ++ is equivalent to ++ \spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, ++ [y1 a = b1,..., yn a = bn])}. seriesSolve: (List F, List OP, EQ, List F) -> Any ++ seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn]) ++ is equivalent to ++ \spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}. seriesSolve: (List F, List OP, EQ, List EQ) -> Any ++ seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn]) ++ is equivalent to ++ \spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, ++ [y1 a = b1,..., yn a = bn])}. seriesSolve: (EQ, OP, EQ, F) -> Any ++ seriesSolve(eq,y, x=a, b) is equivalent to ++ \spad{seriesSolve(eq, y, x=a, y a = b)}. seriesSolve: (F, OP, EQ, F) -> Any ++ seriesSolve(eq, y, x = a, b) is equivalent to ++ \spad{seriesSolve(eq = 0, y, x = a, y a = b)}. seriesSolve: (F, OP, EQ, EQ) -> Any ++ seriesSolve(eq, y, x = a, y a = b) is equivalent to ++ \spad{seriesSolve(eq=0, y, x=a, y a = b)}. seriesSolve: (F, OP, EQ, List F) -> Any ++ seriesSolve(eq, y, x = a, [b0,...,bn]) is equivalent to ++ \spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}. Implementation ==> add checkCompat: (OP, EQ, EQ) -> F checkOrder1: (F, OP, K, SY, F) -> F checkOrderN: (F, OP, K, SY, F, NonNegativeInteger) -> F checkSystem: (F, List K, List F) -> F div2exquo : F -> F smp2exquo : P -> F k2exquo : K -> F diffRhs : (F, F) -> F diffRhsK : (K, F) -> F findCompat : (F, List EQ) -> F findEq : (K, SY, List F) -> F localInteger: F -> F opelt := operator('elt)$OP --opex := operator('exquo)$OP opex := operator('fixedPointExquo)$OP opint := operator('integer)$OP Rint? := R has IntegerNumberSystem localInteger n == (Rint? => n; opint n) diffRhs(f, g) == diffRhsK(retract(f)@K, g) k2exquo k == is?(op := operator k,'%diff) => error "Improper differential equation" kernel(op, [div2exquo f for f in argument k]$List(F)) smp2exquo p == map(k2exquo,#1::F,p)$PolynomialCategoryLifting(IndexedExponents K, K, R, P, F) div2exquo f == one?(d := denom f) => f opex(smp2exquo numer f, smp2exquo d) -- if g is of the form a * k + b, then return -b/a diffRhsK(k, g) == h := univariate(g, k) (degree(numer h) <= 1) and ground? denom h => - coefficient(numer h, 0) / coefficient(numer h, 1) error "Improper differential equation" checkCompat(y, eqx, eqy) == lhs(eqy) =$F y(rhs eqx) => rhs eqy error "Improper initial value" findCompat(yx, l) == for eq in l repeat yx =$F lhs eq => return rhs eq error "Improper initial value" findEq(k, x, sys) == k := retract(differentiate(k::F, x))@K for eq in sys repeat member?(k, kernels eq) => return eq error "Improper differential equation" checkOrder1(diffeq, y, yx, x, sy) == div2exquo subst(diffRhs(differentiate(yx::F,x),diffeq),[yx],[sy]) checkOrderN(diffeq, y, yx, x, sy, n) == zero? n => error "No initial value(s) given" m := (minIndex(l := [retract(f := yx::F)@K]$List(K)))::F lv := [opelt(sy, localInteger m)]$List(F) for i in 2..n repeat l := concat(retract(f := differentiate(f, x))@K, l) lv := concat(opelt(sy, localInteger(m := m + 1)), lv) div2exquo subst(diffRhs(differentiate(f, x), diffeq), l, lv) checkSystem(diffeq, yx, lv) == for k in kernels diffeq repeat is?(k, '%diff) => return div2exquo subst(diffRhsK(k, diffeq), yx, lv) 0 seriesSolve(l:List EQ, y:List OP, eqx:EQ, eqy:List EQ) == seriesSolve([lhs deq - rhs deq for deq in l]$List(F), y, eqx, eqy) seriesSolve(l:List EQ, y:List OP, eqx:EQ, y0:List F) == seriesSolve([lhs deq - rhs deq for deq in l]$List(F), y, eqx, y0) seriesSolve(l:List F, ly:List OP, eqx:EQ, eqy:List EQ) == seriesSolve(l, ly, eqx, [findCompat(y rhs eqx, eqy) for y in ly]$List(F)) seriesSolve(diffeq:EQ, y:OP, eqx:EQ, eqy:EQ) == seriesSolve(lhs diffeq - rhs diffeq, y, eqx, eqy) seriesSolve(diffeq:EQ, y:OP, eqx:EQ, y0:F) == seriesSolve(lhs diffeq - rhs diffeq, y, eqx, y0) seriesSolve(diffeq:EQ, y:OP, eqx:EQ, y0:List F) == seriesSolve(lhs diffeq - rhs diffeq, y, eqx, y0) seriesSolve(diffeq:F, y:OP, eqx:EQ, eqy:EQ) == seriesSolve(diffeq, y, eqx, checkCompat(y, eqx, eqy)) seriesSolve(diffeq:F, y:OP, eqx:EQ, y0:F) == x := symbolIfCan(retract(lhs eqx)@K)::SY sy := name y yx := retract(y lhs eqx)@K f := checkOrder1(diffeq, y, yx, x, sy::F) center := rhs eqx coerce(ode1(compiledFunction(f, sy)$MKF, y0)$ODE)$A1 seriesSolve(diffeq:F, y:OP, eqx:EQ, y0:List F) == x := symbolIfCan(retract(lhs eqx)@K)::SY sy := new()$SY yx := retract(y lhs eqx)@K f := checkOrderN(diffeq, y, yx, x, sy::F, #y0) center := rhs eqx coerce(ode(compiledFunction(f, sy)$MKL, y0)$ODE)$A1 seriesSolve(sys:List F, ly:List OP, eqx:EQ, l0:List F) == x := symbolIfCan(kx := retract(lhs eqx)@K)::SY fsy := (sy := new()$SY)::F m := (minIndex(l0) - 1)::F yx := concat(kx, [retract(y lhs eqx)@K for y in ly]$List(K)) lelt := [opelt(fsy, localInteger(m := m+1)) for k in yx]$List(F) sys := [findEq(k, x, sys) for k in rest yx] l := [checkSystem(eq, yx, lelt) for eq in sys]$List(F) center := rhs eqx coerce(mpsode(l0,[compiledFunction(f,sy)$MKL for f in l])$ODE)$AL1 @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package EXPRODE ExpressionSpaceODESolver>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}