\documentclass{article} \usepackage{open-axiom} \begin{document} \title{\$SPAD/src/algebra expr2ups.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package EXPR2UPS ExpressionToUnivariatePowerSeries} <<package EXPR2UPS ExpressionToUnivariatePowerSeries>>= )abbrev package EXPR2UPS ExpressionToUnivariatePowerSeries ++ Author: Clifton J. Williamson ++ Date Created: 9 May 1989 ++ Date Last Updated: 20 September 1993 ++ Basic Operations: taylor, laurent, puiseux, series ++ Related Domains: UnivariateTaylorSeries, UnivariateLaurentSeries, ++ UnivariatePuiseuxSeries, Expression ++ Also See: FunctionSpaceToUnivariatePowerSeries ++ AMS Classifications: ++ Keywords: Taylor series, Laurent series, Puiseux series ++ Examples: ++ References: ++ Description: ++ This package provides functions to convert functional expressions ++ to power series. ExpressionToUnivariatePowerSeries(R,FE): Exports == Implementation where R : Join(GcdDomain,RetractableTo Integer,_ LinearlyExplicitRingOver Integer) FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_ FunctionSpace R) EQ ==> Equation I ==> Integer NNI ==> NonNegativeInteger RN ==> Fraction Integer SY ==> Symbol UTS ==> UnivariateTaylorSeries ULS ==> UnivariateLaurentSeries UPXS ==> UnivariatePuiseuxSeries GSER ==> GeneralUnivariatePowerSeries EFULS ==> ElementaryFunctionsUnivariateLaurentSeries EFUPXS ==> ElementaryFunctionsUnivariatePuiseuxSeries FS2UPS ==> FunctionSpaceToUnivariatePowerSeries Prob ==> Record(func:String,prob:String) ANY1 ==> AnyFunctions1 Exports ==> with taylor: SY -> Any ++ \spad{taylor(x)} returns x viewed as a Taylor series. taylor: FE -> Any ++ \spad{taylor(f)} returns a Taylor expansion of the expression f. ++ Note: f should have only one variable; the series will be ++ expanded in powers of that variable. taylor: (FE,NNI) -> Any ++ \spad{taylor(f,n)} returns a Taylor expansion of the expression f. ++ Note: f should have only one variable; the series will be ++ expanded in powers of that variable and terms will be computed ++ up to order at least n. taylor: (FE,EQ FE) -> Any ++ \spad{taylor(f,x = a)} expands the expression f as a Taylor series ++ in powers of \spad{(x - a)}. taylor: (FE,EQ FE,NNI) -> Any ++ \spad{taylor(f,x = a)} expands the expression f as a Taylor series ++ in powers of \spad{(x - a)}; terms will be computed up to order ++ at least n. laurent: SY -> Any ++ \spad{laurent(x)} returns x viewed as a Laurent series. laurent: FE -> Any ++ \spad{laurent(f)} returns a Laurent expansion of the expression f. ++ Note: f should have only one variable; the series will be ++ expanded in powers of that variable. laurent: (FE,I) -> Any ++ \spad{laurent(f,n)} returns a Laurent expansion of the expression f. ++ Note: f should have only one variable; the series will be ++ expanded in powers of that variable and terms will be computed ++ up to order at least n. laurent: (FE,EQ FE) -> Any ++ \spad{laurent(f,x = a)} expands the expression f as a Laurent series ++ in powers of \spad{(x - a)}. laurent: (FE,EQ FE,I) -> Any ++ \spad{laurent(f,x = a,n)} expands the expression f as a Laurent ++ series in powers of \spad{(x - a)}; terms will be computed up to order ++ at least n. puiseux: SY -> Any ++ \spad{puiseux(x)} returns x viewed as a Puiseux series. puiseux: FE -> Any ++ \spad{puiseux(f)} returns a Puiseux expansion of the expression f. ++ Note: f should have only one variable; the series will be ++ expanded in powers of that variable. puiseux: (FE,RN) -> Any ++ \spad{puiseux(f,n)} returns a Puiseux expansion of the expression f. ++ Note: f should have only one variable; the series will be ++ expanded in powers of that variable and terms will be computed ++ up to order at least n. puiseux: (FE,EQ FE) -> Any ++ \spad{puiseux(f,x = a)} expands the expression f as a Puiseux series ++ in powers of \spad{(x - a)}. puiseux: (FE,EQ FE,RN) -> Any ++ \spad{puiseux(f,x = a,n)} expands the expression f as a Puiseux ++ series in powers of \spad{(x - a)}; terms will be computed up to order ++ at least n. series: SY -> Any ++ \spad{series(x)} returns x viewed as a series. series: FE -> Any ++ \spad{series(f)} returns a series expansion of the expression f. ++ Note: f should have only one variable; the series will be ++ expanded in powers of that variable. series: (FE,RN) -> Any ++ \spad{series(f,n)} returns a series expansion of the expression f. ++ Note: f should have only one variable; the series will be ++ expanded in powers of that variable and terms will be computed ++ up to order at least n. series: (FE,EQ FE) -> Any ++ \spad{series(f,x = a)} expands the expression f as a series ++ in powers of (x - a). series: (FE,EQ FE,RN) -> Any ++ \spad{series(f,x = a,n)} expands the expression f as a series ++ in powers of (x - a); terms will be computed up to order ++ at least n. Implementation ==> add performSubstitution: (FE,SY,FE) -> FE performSubstitution(fcn,x,a) == zero? a => fcn xFE := x :: FE eval(fcn,xFE = xFE + a) iTaylor: (FE,SY,FE) -> Any iTaylor(fcn,x,a) == pack := FS2UPS(R,FE,I,ULS(FE,x,a),_ EFULS(FE,UTS(FE,x,a),ULS(FE,x,a)),x) ans := exprToUPS(fcn,false,"just do it")$pack ans case %problem => ans.%problem.prob = "essential singularity" => error "No Taylor expansion: essential singularity" ans.%problem.func = "log" => error "No Taylor expansion: logarithmic singularity" ans.%problem.func = "nth root" => error "No Taylor expansion: fractional powers in expansion" error "No Taylor expansion" uls := ans.%series (uts := taylorIfCan uls) case "failed" => error "No Taylor expansion: pole" any1 := ANY1(UTS(FE,x,a)) coerce(uts :: UTS(FE,x,a))$any1 taylor(x:SY) == uts := UTS(FE,x,0$FE); any1 := ANY1(uts) coerce(monomial(1,1)$uts)$any1 taylor(fcn:FE) == null(vars := variables fcn) => error "taylor: expression has no variables" not null rest vars => error "taylor: expression has more than one variable" taylor(fcn,(first(vars) :: FE) = 0) taylor(fcn:FE,n:NNI) == null(vars := variables fcn) => error "taylor: expression has no variables" not null rest vars => error "taylor: expression has more than one variable" x := first vars uts := UTS(FE,x,0$FE); any1 := ANY1(uts) series := retract(taylor(fcn,(x :: FE) = 0))$any1 coerce(extend(series,n))$any1 taylor(fcn:FE,eq:EQ FE) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq iTaylor(performSubstitution(fcn,x,a),x,a) taylor(fcn,eq,n) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq any1 := ANY1(UTS(FE,x,a)) series := retract(iTaylor(performSubstitution(fcn,x,a),x,a))$any1 coerce(extend(series,n))$any1 iLaurent: (FE,SY,FE) -> Any iLaurent(fcn,x,a) == pack := FS2UPS(R,FE,I,ULS(FE,x,a),_ EFULS(FE,UTS(FE,x,a),ULS(FE,x,a)),x) ans := exprToUPS(fcn,false,"just do it")$pack ans case %problem => ans.%problem.prob = "essential singularity" => error "No Laurent expansion: essential singularity" ans.%problem.func = "log" => error "No Laurent expansion: logarithmic singularity" ans.%problem.func = "nth root" => error "No Laurent expansion: fractional powers in expansion" error "No Laurent expansion" any1 := ANY1(ULS(FE,x,a)) coerce(ans.%series)$any1 laurent(x:SY) == uls := ULS(FE,x,0$FE); any1 := ANY1(uls) coerce(monomial(1,1)$uls)$any1 laurent(fcn:FE) == null(vars := variables fcn) => error "laurent: expression has no variables" not null rest vars => error "laurent: expression has more than one variable" laurent(fcn,(first(vars) :: FE) = 0) laurent(fcn:FE,n:I) == null(vars := variables fcn) => error "laurent: expression has no variables" not null rest vars => error "laurent: expression has more than one variable" x := first vars uls := ULS(FE,x,0$FE); any1 := ANY1(uls) series := retract(laurent(fcn,(x :: FE) = 0))$any1 coerce(extend(series,n))$any1 laurent(fcn:FE,eq:EQ FE) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq iLaurent(performSubstitution(fcn,x,a),x,a) laurent(fcn,eq,n) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq any1 := ANY1(ULS(FE,x,a)) series := retract(iLaurent(performSubstitution(fcn,x,a),x,a))$any1 coerce(extend(series,n))$any1 iPuiseux: (FE,SY,FE) -> Any iPuiseux(fcn,x,a) == pack := FS2UPS(R,FE,RN,UPXS(FE,x,a),_ EFUPXS(FE,ULS(FE,x,a),UPXS(FE,x,a),_ EFULS(FE,UTS(FE,x,a),ULS(FE,x,a))),x) ans := exprToUPS(fcn,false,"just do it")$pack ans case %problem => ans.%problem.prob = "essential singularity" => error "No Puiseux expansion: essential singularity" ans.%problem.func = "log" => error "No Puiseux expansion: logarithmic singularity" error "No Puiseux expansion" any1 := ANY1(UPXS(FE,x,a)) coerce(ans.%series)$any1 puiseux(x:SY) == upxs := UPXS(FE,x,0$FE); any1 := ANY1(upxs) coerce(monomial(1,1)$upxs)$any1 puiseux(fcn:FE) == null(vars := variables fcn) => error "puiseux: expression has no variables" not null rest vars => error "puiseux: expression has more than one variable" puiseux(fcn,(first(vars) :: FE) = 0) puiseux(fcn:FE,n:RN) == null(vars := variables fcn) => error "puiseux: expression has no variables" not null rest vars => error "puiseux: expression has more than one variable" x := first vars upxs := UPXS(FE,x,0$FE); any1 := ANY1(upxs) series := retract(puiseux(fcn,(x :: FE) = 0))$any1 coerce(extend(series,n))$any1 puiseux(fcn:FE,eq:EQ FE) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq iPuiseux(performSubstitution(fcn,x,a),x,a) puiseux(fcn,eq,n) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq any1 := ANY1(UPXS(FE,x,a)) series := retract(iPuiseux(performSubstitution(fcn,x,a),x,a))$any1 coerce(extend(series,n))$any1 iSeries: (FE,SY,FE) -> Any iSeries(fcn,x,a) == pack := FS2UPS(R,FE,RN,UPXS(FE,x,a), _ EFUPXS(FE,ULS(FE,x,a),UPXS(FE,x,a), _ EFULS(FE,UTS(FE,x,a),ULS(FE,x,a))),x) ans := exprToUPS(fcn,false,"just do it")$pack ans case %problem => ansG := exprToGenUPS(fcn,false,"just do it")$pack ansG case %problem => ansG.%problem.prob = "essential singularity" => error "No series expansion: essential singularity" error "No series expansion" anyone := ANY1(GSER(FE,x,a)) coerce((ansG.%series) :: GSER(FE,x,a))$anyone any1 := ANY1(UPXS(FE,x,a)) coerce(ans.%series)$any1 series(x:SY) == upxs := UPXS(FE,x,0$FE); any1 := ANY1(upxs) coerce(monomial(1,1)$upxs)$any1 series(fcn:FE) == null(vars := variables fcn) => error "series: expression has no variables" not null rest vars => error "series: expression has more than one variable" series(fcn,(first(vars) :: FE) = 0) series(fcn:FE,n:RN) == null(vars := variables fcn) => error "series: expression has no variables" not null rest vars => error "series: expression has more than one variable" x := first vars upxs := UPXS(FE,x,0$FE); any1 := ANY1(upxs) series := retract(series(fcn,(x :: FE) = 0))$any1 coerce(extend(series,n))$any1 series(fcn:FE,eq:EQ FE) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq iSeries(performSubstitution(fcn,x,a),x,a) series(fcn,eq,n) == (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" => error "taylor: left hand side must be a variable" x := xx :: SY; a := rhs eq any1 := ANY1(UPXS(FE,x,a)) series := retract(iSeries(performSubstitution(fcn,x,a),x,a))$any1 coerce(extend(series,n))$any1 @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<package EXPR2UPS ExpressionToUnivariatePowerSeries>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}