\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra expexpan.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain EXPUPXS ExponentialOfUnivariatePuiseuxSeries}
<<domain EXPUPXS ExponentialOfUnivariatePuiseuxSeries>>=
)abbrev domain EXPUPXS ExponentialOfUnivariatePuiseuxSeries
++ Author: Clifton J. Williamson
++ Date Created: 4 August 1992
++ Date Last Updated: 27 August 1992
++ Basic Operations:
++ Related Domains: UnivariatePuiseuxSeries(FE,var,cen)
++ Also See:
++ AMS Classifications:
++ Keywords: limit, functional expression, power series, essential singularity
++ Examples:
++ References:
++ Description:
++   ExponentialOfUnivariatePuiseuxSeries is a domain used to represent
++   essential singularities of functions.  An object in this domain is a
++   function of the form \spad{exp(f(x))}, where \spad{f(x)} is a Puiseux
++   series with no terms of non-negative degree.  Objects are ordered
++   according to order of singularity, with functions which tend more
++   rapidly to zero or infinity considered to be larger.  Thus, if
++   \spad{order(f(x)) < order(g(x))}, i.e. the first non-zero term of
++   \spad{f(x)} has lower degree than the first non-zero term of \spad{g(x)},
++   then \spad{exp(f(x)) > exp(g(x))}.  If \spad{order(f(x)) = order(g(x))},
++   then the ordering is essentially random.  This domain is used
++   in computing limits involving functions with essential singularities.
ExponentialOfUnivariatePuiseuxSeries(FE,var,cen):_
      Exports == Implementation where
  FE  : Field
  var : Symbol
  cen : FE
  UPXS ==> UnivariatePuiseuxSeries(FE,var,cen)

  Exports ==> Join(UnivariatePuiseuxSeriesCategory(FE),OrderedAbelianMonoid) _
        with
    exponential : UPXS -> %
      ++ exponential(f(x)) returns \spad{exp(f(x))}.
      ++ Note: the function does NOT check that \spad{f(x)} has no
      ++ non-negative terms.
    exponent : % -> UPXS
      ++ exponent(exp(f(x))) returns \spad{f(x)}
    exponentialOrder: % -> Fraction Integer
      ++ exponentialOrder(exp(c * x **(-n) + ...)) returns \spad{-n}.
      ++ exponentialOrder(0) returns \spad{0}.

  Implementation ==> UPXS add

    Rep := UPXS

    exponential f == complete f
    exponent f == f pretend UPXS
    exponentialOrder f == order(exponent f,0)

    zero? f == empty? entries complete terms f

    f = g ==
    -- we redefine equality because we know that we are dealing with
    -- a FINITE series, so there is no danger in computing all terms
      (entries complete terms f) = (entries complete terms g)

    f < g ==
      zero? f => not zero? g
      zero? g => false
      (ordf := exponentialOrder f) > (ordg := exponentialOrder g) => true
      ordf < ordg => false
      (fCoef := coefficient(f,ordf)) = (gCoef := coefficient(g,ordg)) =>
        reductum(f) < reductum(g)
      before?(fCoef,gCoef)  -- this is "random" if FE is EXPR INT

    coerce(f:%):OutputForm ==
      ("%e" :: OutputForm) ** ((coerce$Rep)(complete f)@OutputForm)

@
\section{domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity}
<<domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity>>=
)abbrev domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity
++ Author: Clifton J. Williamson
++ Date Created: 4 August 1992
++ Date Last Updated: 27 August 1992
++ Basic Operations:
++ Related Domains: UnivariatePuiseuxSeries(FE,var,cen),
++                  ExponentialOfUnivariatePuiseuxSeries(FE,var,cen)
++                  ExponentialExpansion(R,FE,var,cen)
++ Also See:
++ AMS Classifications:
++ Keywords: limit, functional expression, power series
++ Examples:
++ References:
++ Description:
++   UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to
++   represent functions with essential singularities.  Objects in this
++   domain are sums, where each term in the sum is a univariate Puiseux
++   series times the exponential of a univariate Puiseux series.  Thus,
++   the elements of this domain are sums of expressions of the form
++   \spad{g(x) * exp(f(x))}, where g(x) is a univariate Puiseux series
++   and f(x) is a univariate Puiseux series with no terms of non-negative
++   degree.
UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen):_
  Exports == Implementation where
  R   : Join(RetractableTo Integer,_
             LinearlyExplicitRingOver Integer,GcdDomain)
  FE  : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_
             FunctionSpace R)
  var : Symbol
  cen : FE
  B       ==> Boolean
  I       ==> Integer
  L       ==> List
  RN      ==> Fraction Integer
  UPXS    ==> UnivariatePuiseuxSeries(FE,var,cen)
  EXPUPXS ==> ExponentialOfUnivariatePuiseuxSeries(FE,var,cen)
  OFE     ==> OrderedCompletion FE
  Result  ==> Union(OFE,"failed")
  PxRec   ==> Record(k: Fraction Integer,c:FE)
  Term    ==> Record(%coef:UPXS,%expon:EXPUPXS,%expTerms:List PxRec)
    -- the %expTerms field is used to record the list of the terms (a 'term'
    -- records an exponent and a coefficient) in the exponent %expon
  TypedTerm ==> Record(%term:Term,%type:String)
    -- a term together with a String which tells whether it has an infinite,
    -- zero, or unknown limit as var -> cen+
  TRec    ==> Record(%zeroTerms: List Term,_
                     %infiniteTerms: List Term,_
                     %failedTerms: List Term,_
                     %puiseuxSeries: UPXS)
  SIGNEF  ==> ElementaryFunctionSign(R,FE)

  Exports ==> Join(FiniteAbelianMonoidRing(UPXS,EXPUPXS),IntegralDomain) with
    limitPlus : % -> Union(OFE,"failed")
      ++ limitPlus(f(var)) returns \spad{limit(var -> cen+,f(var))}.
    dominantTerm : % -> Union(TypedTerm,"failed")
      ++ dominantTerm(f(var)) returns the term that dominates the limiting
      ++ behavior of \spad{f(var)} as \spad{var -> cen+} together with a
      ++ \spadtype{String} which briefly describes that behavior.  The
      ++ value of the \spadtype{String} will be \spad{"zero"} (resp.
      ++ \spad{"infinity"}) if the term tends to zero (resp. infinity)
      ++ exponentially and will \spad{"series"} if the term is a
      ++ Puiseux series.

  Implementation ==> PolynomialRing(UPXS,EXPUPXS) add
    makeTerm : (UPXS,EXPUPXS) -> Term
    coeff : Term -> UPXS
    exponent : Term -> EXPUPXS
    exponentTerms : Term -> List PxRec
    setExponentTerms! : (Term,List PxRec) -> List PxRec
    computeExponentTerms! : Term -> List PxRec
    terms : % -> List Term
    sortAndDiscardTerms: List Term -> TRec
    termsWithExtremeLeadingCoef : (L Term,RN,I) -> Union(L Term,"failed")
    filterByOrder: (L Term,(RN,RN) -> B) -> Record(%list:L Term,%order:RN)
    dominantTermOnList : (L Term,RN,I) -> Union(Term,"failed")
    iDominantTerm : L Term -> Union(Record(%term:Term,%type:String),"failed")

    retractIfCan(f: %): Union(UPXS,"failed") ==
      (numberOfMonomials f = 1) and (zero? degree f) => leadingCoefficient f
      "failed"

    recip f ==
      numberOfMonomials f = 1 =>
        monomial(inv leadingCoefficient f,- degree f)
      "failed"

    makeTerm(coef,expon) == [coef,expon,empty()]
    coeff term == term.%coef
    exponent term == term.%expon
    exponentTerms term == term.%expTerms
    setExponentTerms!(term,list) == term.%expTerms := list
    computeExponentTerms! term ==
      setExponentTerms!(term,entries complete terms exponent term)

    terms f ==
      -- terms with a higher order singularity will appear closer to the
      -- beginning of the list because of the ordering in EXPPUPXS;
      -- no "expnonent terms" are computed by this function
      zero? f => empty()
      concat(makeTerm(leadingCoefficient f,degree f),terms reductum f)

    sortAndDiscardTerms termList ==
      -- 'termList' is the list of terms of some function f(var), ordered
      -- so that terms with a higher order singularity occur at the
      -- beginning of the list.
      -- This function returns lists of candidates for the "dominant
      -- term" in 'termList', i.e. the term which describes the
      -- asymptotic behavior of f(var) as var -> cen+.
      -- 'zeroTerms' will contain terms which tend to zero exponentially
      -- and contains only those terms with the lowest order singularity.
      -- 'zeroTerms' will be non-empty only when there are no terms of
      -- infinite or series type.
      -- 'infiniteTerms' will contain terms which tend to infinity
      -- exponentially and contains only those terms with the highest
      -- order singularity.
      -- 'failedTerms' will contain terms which have an exponential
      -- singularity, where we cannot say whether the limiting value
      -- is zero or infinity. Only terms with a higher order sigularity
      -- than the terms on 'infiniteList' are included.
      -- 'pSeries' will be a Puiseux series representing a term without an
      -- exponential singularity.  'pSeries' will be non-zero only when no
      -- other terms are known to tend to infinity exponentially
      zeroTerms : List Term := empty()
      infiniteTerms : List Term := empty()
      failedTerms : List Term := empty()
      -- we keep track of whether or not we've found an infinite term
      -- if so, 'infTermOrd' will be set to a negative value
      infTermOrd : RN := 0
      -- we keep track of whether or not we've found a zero term
      -- if so, 'zeroTermOrd' will be set to a negative value
      zeroTermOrd : RN := 0
      ord : RN := 0; pSeries : UPXS := 0  -- dummy values
      while not empty? termList repeat
        -- 'expon' is a Puiseux series
        expon := exponent(term := first termList)
        -- quit if there is an infinite term with a higher order singularity
        (ord := order(expon,0)) > infTermOrd => leave "infinite term dominates"
        -- if ord = 0, we've hit the end of the list
        (ord = 0) =>
          -- since we have a series term, don't bother with zero terms
          leave(pSeries := coeff(term); zeroTerms := empty())
        coef := coefficient(expon,ord)
        -- if we can't tell if the lowest order coefficient is positive or
        -- negative, we have a "failed term"
        (signum := sign(coef)$SIGNEF) case "failed" =>
          failedTerms := concat(term,failedTerms)
          termList := rest termList
        -- if the lowest order coefficient is positive, we have an
        -- "infinite term"
        (sig := signum :: Integer) = 1 =>
          infTermOrd := ord
          infiniteTerms := concat(term,infiniteTerms)
          -- since we have an infinite term, don't bother with zero terms
          zeroTerms := empty()
          termList := rest termList
        -- if the lowest order coefficient is negative, we have a
        -- "zero term" if there are no infinite terms and no failed
        -- terms, add the term to 'zeroTerms'
        if empty? infiniteTerms then
          zeroTerms :=
            ord = zeroTermOrd => concat(term,zeroTerms)
            zeroTermOrd := ord
            list term
        termList := rest termList
      -- reverse "failed terms" so that higher order singularities
      -- appear at the beginning of the list
      [zeroTerms,infiniteTerms,reverse! failedTerms,pSeries]

    termsWithExtremeLeadingCoef(termList,ord,signum) ==
      -- 'termList' consists of terms of the form [g(x),exp(f(x)),...];
      -- when 'signum' is +1 (resp. -1), this function filters 'termList'
      -- leaving only those terms such that coefficient(f(x),ord) is
      -- maximal (resp. minimal)
      while (coefficient(exponent first termList,ord) = 0) repeat
        termList := rest termList
      empty? termList => error "UPXSSING: can't happen"
      coefExtreme := coefficient(exponent first termList,ord)
      outList := list first termList; termList := rest termList
      for term in termList repeat
        (coefDiff := coefficient(exponent term,ord) - coefExtreme) = 0 =>
          outList := concat(term,outList)
        (sig := sign(coefDiff)$SIGNEF) case "failed" => return "failed"
        (sig :: Integer) = signum => outList := list term
      outList

    filterByOrder(termList,predicate) ==
      -- 'termList' consists of terms of the form [g(x),exp(f(x)),expTerms],
      -- where 'expTerms' is a list containing some of the terms in the
      -- series f(x).
      -- The function filters 'termList' and, when 'predicate' is < (resp. >),
      -- leaves only those terms with the lowest (resp. highest) order term
      -- in 'expTerms'
      while empty? exponentTerms first termList repeat
        termList := rest termList
        empty? termList => error "UPXSING: can't happen"
      ordExtreme := (first exponentTerms first termList).k
      outList := list first termList
      for term in rest termList repeat
        not empty? exponentTerms term =>
          (ord := (first exponentTerms term).k) = ordExtreme =>
            outList := concat(term,outList)
          predicate(ord,ordExtreme) =>
            ordExtreme := ord
            outList := list term
      -- advance pointers on "exponent terms" on terms on 'outList'
      for term in outList repeat
        setExponentTerms!(term,rest exponentTerms term)
      [outList,ordExtreme]

    dominantTermOnList(termList,ord0,signum) ==
      -- finds dominant term on 'termList'
      -- it is known that "exponent terms" of order < 'ord0' are
      -- the same for all terms on 'termList'
      newList := termsWithExtremeLeadingCoef(termList,ord0,signum)
      newList case "failed" => "failed"
      termList := newList :: List Term
      empty? rest termList => first termList
      filtered :=
        signum = 1 => filterByOrder(termList,#1 < #2)
        filterByOrder(termList,#1 > #2)
      termList := filtered.%list
      empty? rest termList => first termList
      dominantTermOnList(termList,filtered.%order,signum)

    iDominantTerm termList ==
      termRecord := sortAndDiscardTerms termList
      zeroTerms := termRecord.%zeroTerms
      infiniteTerms := termRecord.%infiniteTerms
      failedTerms := termRecord.%failedTerms
      pSeries := termRecord.%puiseuxSeries
      -- in future versions, we will deal with "failed terms"
      -- at present, if any occur, we cannot determine the limit
      not empty? failedTerms => "failed"
      not zero? pSeries => [makeTerm(pSeries,0),"series"]
      not empty? infiniteTerms =>
        empty? rest infiniteTerms => [first infiniteTerms,"infinity"]
        for term in infiniteTerms repeat computeExponentTerms! term
        ord0 := order exponent first infiniteTerms
        (dTerm := dominantTermOnList(infiniteTerms,ord0,1)) case "failed" =>
          return "failed"
        [dTerm :: Term,"infinity"]
      empty? rest zeroTerms => [first zeroTerms,"zero"]
      for term in zeroTerms repeat computeExponentTerms! term
      ord0 := order exponent first zeroTerms
      (dTerm := dominantTermOnList(zeroTerms,ord0,-1)) case "failed" =>
        return "failed"
      [dTerm :: Term,"zero"]

    dominantTerm f == iDominantTerm terms f

    limitPlus f ==
      -- list the terms occurring in 'f'; if there are none, then f = 0
      empty?(termList := terms f) => 0
      -- compute dominant term
      (tInfo := iDominantTerm termList) case "failed" => "failed"
      termInfo := tInfo :: Record(%term:Term,%type:String)
      domTerm := termInfo.%term
      (type := termInfo.%type) = "series" =>
        -- find limit of series term
        positive?(ord := order(pSeries := coeff domTerm,1)) => 0
        coef := coefficient(pSeries,ord)
        member?(var,variables coef) => "failed"
        ord = 0 => coef :: OFE
        -- in the case of an infinite limit, we need to know the sign
        -- of the first non-zero coefficient
        (signum := sign(coef)$SIGNEF) case "failed" => "failed"
        (signum :: Integer) = 1 => plusInfinity()
        minusInfinity()
      type = "zero" => 0
      -- examine lowest order coefficient in series part of 'domTerm'
      ord := order(pSeries := coeff domTerm)
      coef := coefficient(pSeries,ord)
      member?(var,variables coef) => "failed"
      (signum := sign(coef)$SIGNEF) case "failed" => "failed"
      (signum :: Integer) = 1 => plusInfinity()
      minusInfinity()

@
\section{domain EXPEXPAN ExponentialExpansion}
<<domain EXPEXPAN ExponentialExpansion>>=
)abbrev domain EXPEXPAN ExponentialExpansion
++ Author: Clifton J. Williamson
++ Date Created: 13 August 1992
++ Date Last Updated: 27 August 1992
++ Basic Operations:
++ Related Domains: UnivariatePuiseuxSeries(FE,var,cen),
++                  ExponentialOfUnivariatePuiseuxSeries(FE,var,cen)
++ Also See:
++ AMS Classifications:
++ Keywords: limit, functional expression, power series
++ Examples:
++ References:
++ Description:
++   UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to
++   represent essential singularities of functions.  Objects in this domain
++   are quotients of sums, where each term in the sum is a univariate Puiseux
++   series times the exponential of a univariate Puiseux series.
ExponentialExpansion(R,FE,var,cen): Exports == Implementation where
  R   : Join(RetractableTo Integer,_
             LinearlyExplicitRingOver Integer,GcdDomain)
  FE  : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_
             FunctionSpace R)
  var : Symbol
  cen : FE
  RN       ==> Fraction Integer
  UPXS     ==> UnivariatePuiseuxSeries(FE,var,cen)
  EXPUPXS  ==> ExponentialOfUnivariatePuiseuxSeries(FE,var,cen)
  UPXSSING ==> UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen)
  OFE      ==> OrderedCompletion FE
  Result   ==> Union(OFE,"failed")
  PxRec    ==> Record(k: Fraction Integer,c:FE)
  Term     ==> Record(%coef:UPXS,%expon:EXPUPXS,%expTerms:List PxRec)
  TypedTerm ==> Record(%term:Term,%type:String)
  SIGNEF   ==> ElementaryFunctionSign(R,FE)

  Exports ==> Join(QuotientFieldCategory UPXSSING,RetractableTo UPXS) with
    limitPlus : % -> Union(OFE,"failed")
      ++ limitPlus(f(var)) returns \spad{limit(var -> a+,f(var))}.
    coerce: UPXS -> %
      ++ coerce(f) converts a \spadtype{UnivariatePuiseuxSeries} to
      ++ an \spadtype{ExponentialExpansion}.

  Implementation ==> Fraction(UPXSSING) add
    coeff : Term -> UPXS
    exponent : Term -> EXPUPXS
    upxssingIfCan : % -> Union(UPXSSING,"failed")
    seriesQuotientLimit: (UPXS,UPXS) -> Union(OFE,"failed")
    seriesQuotientInfinity: (UPXS,UPXS) -> Union(OFE,"failed")

    Rep := Fraction UPXSSING

    ZEROCOUNT : RN := 1000/1

    coeff term == term.%coef
    exponent term == term.%expon

    --!! why is this necessary?
    --!! code can run forever in retractIfCan if original assignment
    --!! for 'ff' is used
    upxssingIfCan f ==
      one? denom f => numer f
      "failed"

    retractIfCan(f:%):Union(UPXS,"failed") ==
      --ff := (retractIfCan$Rep)(f)@Union(UPXSSING,"failed")
      --ff case "failed" => "failed"
      (ff := upxssingIfCan f) case "failed" => "failed"
      (fff := retractIfCan(ff::UPXSSING)@Union(UPXS,"failed")) case "failed" =>
        "failed"
      fff :: UPXS

    f:UPXSSING / g:UPXSSING ==
      (rec := recip g) case "failed" => f /$Rep g
      f * (rec :: UPXSSING) :: %

    f:% / g:% ==
      (rec := recip numer g) case "failed" => f /$Rep g
      (rec :: UPXSSING) * (denom g) * f

    coerce(f:UPXS) == f :: UPXSSING :: %

    seriesQuotientLimit(num,den) ==
      -- limit of the quotient of two series
      series := num / den
      positive?(ord := order(series,1)) => 0
      coef := coefficient(series,ord)
      member?(var,variables coef) => "failed"
      ord = 0 => coef :: OFE
      (sig := sign(coef)$SIGNEF) case "failed" => return "failed"
      (sig :: Integer) = 1 => plusInfinity()
      minusInfinity()

    seriesQuotientInfinity(num,den) ==
      -- infinite limit: plus or minus?
      -- look at leading coefficients of series to tell
      (numOrd := order(num,ZEROCOUNT)) = ZEROCOUNT => "failed"
      (denOrd := order(den,ZEROCOUNT)) = ZEROCOUNT => "failed"
      cc := coefficient(num,numOrd)/coefficient(den,denOrd)
      member?(var,variables cc) => "failed"
      (sig := sign(cc)$SIGNEF) case "failed" => return "failed"
      (sig :: Integer) = 1 => plusInfinity()
      minusInfinity()

    limitPlus f ==
      zero? f => 0
      (den := denom f) = 1 => limitPlus numer f
      (numerTerm := dominantTerm(num := numer f)) case "failed" => "failed"
      numType := (numTerm := numerTerm :: TypedTerm).%type
      (denomTerm := dominantTerm den) case "failed" => "failed"
      denType := (denTerm := denomTerm :: TypedTerm).%type
      numExpon := exponent numTerm.%term; denExpon := exponent denTerm.%term
      numCoef := coeff numTerm.%term; denCoef := coeff denTerm.%term
      -- numerator tends to zero exponentially
      (numType = "zero") =>
        -- denominator tends to zero exponentially
        (denType = "zero") =>
          (exponDiff := numExpon - denExpon) = 0 =>
            seriesQuotientLimit(numCoef,denCoef)
          expCoef := coefficient(exponDiff,order exponDiff)
          (sig := sign(expCoef)$SIGNEF) case "failed" => return "failed"
          (sig :: Integer) = -1 => 0
          seriesQuotientInfinity(numCoef,denCoef)
        0 -- otherwise limit is zero
      -- numerator is a Puiseux series
      (numType = "series") =>
        -- denominator tends to zero exponentially
        (denType = "zero") =>
          seriesQuotientInfinity(numCoef,denCoef)
        -- denominator is a series
        (denType = "series") => seriesQuotientLimit(numCoef,denCoef)
        0
      -- remaining case: numerator tends to infinity exponentially
      -- denominator tends to infinity exponentially
      (denType = "infinity") =>
        (exponDiff := numExpon - denExpon) = 0 =>
          seriesQuotientLimit(numCoef,denCoef)
        expCoef := coefficient(exponDiff,order exponDiff)
        (sig := sign(expCoef)$SIGNEF) case "failed" => return "failed"
        (sig :: Integer) = -1 => 0
        seriesQuotientInfinity(numCoef,denCoef)
      -- denominator tends to zero exponentially or is a series
      seriesQuotientInfinity(numCoef,denCoef)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain EXPUPXS ExponentialOfUnivariatePuiseuxSeries>>
<<domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity>>
<<domain EXPEXPAN ExponentialExpansion>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}