\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra expexpan.spad} \author{Clifton J. Williamson} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain EXPUPXS ExponentialOfUnivariatePuiseuxSeries} <<domain EXPUPXS ExponentialOfUnivariatePuiseuxSeries>>= )abbrev domain EXPUPXS ExponentialOfUnivariatePuiseuxSeries ++ Author: Clifton J. Williamson ++ Date Created: 4 August 1992 ++ Date Last Updated: 27 August 1992 ++ Basic Operations: ++ Related Domains: UnivariatePuiseuxSeries(FE,var,cen) ++ Also See: ++ AMS Classifications: ++ Keywords: limit, functional expression, power series, essential singularity ++ Examples: ++ References: ++ Description: ++ ExponentialOfUnivariatePuiseuxSeries is a domain used to represent ++ essential singularities of functions. An object in this domain is a ++ function of the form \spad{exp(f(x))}, where \spad{f(x)} is a Puiseux ++ series with no terms of non-negative degree. Objects are ordered ++ according to order of singularity, with functions which tend more ++ rapidly to zero or infinity considered to be larger. Thus, if ++ \spad{order(f(x)) < order(g(x))}, i.e. the first non-zero term of ++ \spad{f(x)} has lower degree than the first non-zero term of \spad{g(x)}, ++ then \spad{exp(f(x)) > exp(g(x))}. If \spad{order(f(x)) = order(g(x))}, ++ then the ordering is essentially random. This domain is used ++ in computing limits involving functions with essential singularities. ExponentialOfUnivariatePuiseuxSeries(FE,var,cen):_ Exports == Implementation where FE : Join(Field,OrderedSet) var : Symbol cen : FE UPXS ==> UnivariatePuiseuxSeries(FE,var,cen) Exports ==> Join(UnivariatePuiseuxSeriesCategory(FE),OrderedAbelianMonoid) _ with exponential : UPXS -> % ++ exponential(f(x)) returns \spad{exp(f(x))}. ++ Note: the function does NOT check that \spad{f(x)} has no ++ non-negative terms. exponent : % -> UPXS ++ exponent(exp(f(x))) returns \spad{f(x)} exponentialOrder: % -> Fraction Integer ++ exponentialOrder(exp(c * x **(-n) + ...)) returns \spad{-n}. ++ exponentialOrder(0) returns \spad{0}. Implementation ==> UPXS add Rep := UPXS exponential f == complete f exponent f == f pretend UPXS exponentialOrder f == order(exponent f,0) zero? f == empty? entries complete terms f f = g == -- we redefine equality because we know that we are dealing with -- a FINITE series, so there is no danger in computing all terms (entries complete terms f) = (entries complete terms g) f < g == zero? f => not zero? g zero? g => false (ordf := exponentialOrder f) > (ordg := exponentialOrder g) => true ordf < ordg => false (fCoef := coefficient(f,ordf)) = (gCoef := coefficient(g,ordg)) => reductum(f) < reductum(g) fCoef < gCoef -- this is "random" if FE is EXPR INT coerce(f:%):OutputForm == ("%e" :: OutputForm) ** ((coerce$Rep)(complete f)@OutputForm) @ \section{domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity} <<domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity>>= )abbrev domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity ++ Author: Clifton J. Williamson ++ Date Created: 4 August 1992 ++ Date Last Updated: 27 August 1992 ++ Basic Operations: ++ Related Domains: UnivariatePuiseuxSeries(FE,var,cen), ++ ExponentialOfUnivariatePuiseuxSeries(FE,var,cen) ++ ExponentialExpansion(R,FE,var,cen) ++ Also See: ++ AMS Classifications: ++ Keywords: limit, functional expression, power series ++ Examples: ++ References: ++ Description: ++ UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to ++ represent functions with essential singularities. Objects in this ++ domain are sums, where each term in the sum is a univariate Puiseux ++ series times the exponential of a univariate Puiseux series. Thus, ++ the elements of this domain are sums of expressions of the form ++ \spad{g(x) * exp(f(x))}, where g(x) is a univariate Puiseux series ++ and f(x) is a univariate Puiseux series with no terms of non-negative ++ degree. UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen):_ Exports == Implementation where R : Join(OrderedSet,RetractableTo Integer,_ LinearlyExplicitRingOver Integer,GcdDomain) FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_ FunctionSpace R) var : Symbol cen : FE B ==> Boolean I ==> Integer L ==> List RN ==> Fraction Integer UPXS ==> UnivariatePuiseuxSeries(FE,var,cen) EXPUPXS ==> ExponentialOfUnivariatePuiseuxSeries(FE,var,cen) OFE ==> OrderedCompletion FE Result ==> Union(OFE,"failed") PxRec ==> Record(k: Fraction Integer,c:FE) Term ==> Record(%coef:UPXS,%expon:EXPUPXS,%expTerms:List PxRec) -- the %expTerms field is used to record the list of the terms (a 'term' -- records an exponent and a coefficient) in the exponent %expon TypedTerm ==> Record(%term:Term,%type:String) -- a term together with a String which tells whether it has an infinite, -- zero, or unknown limit as var -> cen+ TRec ==> Record(%zeroTerms: List Term,_ %infiniteTerms: List Term,_ %failedTerms: List Term,_ %puiseuxSeries: UPXS) SIGNEF ==> ElementaryFunctionSign(R,FE) Exports ==> Join(FiniteAbelianMonoidRing(UPXS,EXPUPXS),IntegralDomain) with limitPlus : % -> Union(OFE,"failed") ++ limitPlus(f(var)) returns \spad{limit(var -> cen+,f(var))}. dominantTerm : % -> Union(TypedTerm,"failed") ++ dominantTerm(f(var)) returns the term that dominates the limiting ++ behavior of \spad{f(var)} as \spad{var -> cen+} together with a ++ \spadtype{String} which briefly describes that behavior. The ++ value of the \spadtype{String} will be \spad{"zero"} (resp. ++ \spad{"infinity"}) if the term tends to zero (resp. infinity) ++ exponentially and will \spad{"series"} if the term is a ++ Puiseux series. Implementation ==> PolynomialRing(UPXS,EXPUPXS) add makeTerm : (UPXS,EXPUPXS) -> Term coeff : Term -> UPXS exponent : Term -> EXPUPXS exponentTerms : Term -> List PxRec setExponentTerms_! : (Term,List PxRec) -> List PxRec computeExponentTerms_! : Term -> List PxRec terms : % -> List Term sortAndDiscardTerms: List Term -> TRec termsWithExtremeLeadingCoef : (L Term,RN,I) -> Union(L Term,"failed") filterByOrder: (L Term,(RN,RN) -> B) -> Record(%list:L Term,%order:RN) dominantTermOnList : (L Term,RN,I) -> Union(Term,"failed") iDominantTerm : L Term -> Union(Record(%term:Term,%type:String),"failed") retractIfCan f == (numberOfMonomials f = 1) and (zero? degree f) => leadingCoefficient f "failed" recip f == numberOfMonomials f = 1 => monomial(inv leadingCoefficient f,- degree f) "failed" makeTerm(coef,expon) == [coef,expon,empty()] coeff term == term.%coef exponent term == term.%expon exponentTerms term == term.%expTerms setExponentTerms_!(term,list) == term.%expTerms := list computeExponentTerms_! term == setExponentTerms_!(term,entries complete terms exponent term) terms f == -- terms with a higher order singularity will appear closer to the -- beginning of the list because of the ordering in EXPPUPXS; -- no "expnonent terms" are computed by this function zero? f => empty() concat(makeTerm(leadingCoefficient f,degree f),terms reductum f) sortAndDiscardTerms termList == -- 'termList' is the list of terms of some function f(var), ordered -- so that terms with a higher order singularity occur at the -- beginning of the list. -- This function returns lists of candidates for the "dominant -- term" in 'termList', i.e. the term which describes the -- asymptotic behavior of f(var) as var -> cen+. -- 'zeroTerms' will contain terms which tend to zero exponentially -- and contains only those terms with the lowest order singularity. -- 'zeroTerms' will be non-empty only when there are no terms of -- infinite or series type. -- 'infiniteTerms' will contain terms which tend to infinity -- exponentially and contains only those terms with the highest -- order singularity. -- 'failedTerms' will contain terms which have an exponential -- singularity, where we cannot say whether the limiting value -- is zero or infinity. Only terms with a higher order sigularity -- than the terms on 'infiniteList' are included. -- 'pSeries' will be a Puiseux series representing a term without an -- exponential singularity. 'pSeries' will be non-zero only when no -- other terms are known to tend to infinity exponentially zeroTerms : List Term := empty() infiniteTerms : List Term := empty() failedTerms : List Term := empty() -- we keep track of whether or not we've found an infinite term -- if so, 'infTermOrd' will be set to a negative value infTermOrd : RN := 0 -- we keep track of whether or not we've found a zero term -- if so, 'zeroTermOrd' will be set to a negative value zeroTermOrd : RN := 0 ord : RN := 0; pSeries : UPXS := 0 -- dummy values while not empty? termList repeat -- 'expon' is a Puiseux series expon := exponent(term := first termList) -- quit if there is an infinite term with a higher order singularity (ord := order(expon,0)) > infTermOrd => leave "infinite term dominates" -- if ord = 0, we've hit the end of the list (ord = 0) => -- since we have a series term, don't bother with zero terms leave(pSeries := coeff(term); zeroTerms := empty()) coef := coefficient(expon,ord) -- if we can't tell if the lowest order coefficient is positive or -- negative, we have a "failed term" (signum := sign(coef)$SIGNEF) case "failed" => failedTerms := concat(term,failedTerms) termList := rest termList -- if the lowest order coefficient is positive, we have an -- "infinite term" (sig := signum :: Integer) = 1 => infTermOrd := ord infiniteTerms := concat(term,infiniteTerms) -- since we have an infinite term, don't bother with zero terms zeroTerms := empty() termList := rest termList -- if the lowest order coefficient is negative, we have a -- "zero term" if there are no infinite terms and no failed -- terms, add the term to 'zeroTerms' if empty? infiniteTerms then zeroTerms := ord = zeroTermOrd => concat(term,zeroTerms) zeroTermOrd := ord list term termList := rest termList -- reverse "failed terms" so that higher order singularities -- appear at the beginning of the list [zeroTerms,infiniteTerms,reverse_! failedTerms,pSeries] termsWithExtremeLeadingCoef(termList,ord,signum) == -- 'termList' consists of terms of the form [g(x),exp(f(x)),...]; -- when 'signum' is +1 (resp. -1), this function filters 'termList' -- leaving only those terms such that coefficient(f(x),ord) is -- maximal (resp. minimal) while (coefficient(exponent first termList,ord) = 0) repeat termList := rest termList empty? termList => error "UPXSSING: can't happen" coefExtreme := coefficient(exponent first termList,ord) outList := list first termList; termList := rest termList for term in termList repeat (coefDiff := coefficient(exponent term,ord) - coefExtreme) = 0 => outList := concat(term,outList) (sig := sign(coefDiff)$SIGNEF) case "failed" => return "failed" (sig :: Integer) = signum => outList := list term outList filterByOrder(termList,predicate) == -- 'termList' consists of terms of the form [g(x),exp(f(x)),expTerms], -- where 'expTerms' is a list containing some of the terms in the -- series f(x). -- The function filters 'termList' and, when 'predicate' is < (resp. >), -- leaves only those terms with the lowest (resp. highest) order term -- in 'expTerms' while empty? exponentTerms first termList repeat termList := rest termList empty? termList => error "UPXSING: can't happen" ordExtreme := (first exponentTerms first termList).k outList := list first termList for term in rest termList repeat not empty? exponentTerms term => (ord := (first exponentTerms term).k) = ordExtreme => outList := concat(term,outList) predicate(ord,ordExtreme) => ordExtreme := ord outList := list term -- advance pointers on "exponent terms" on terms on 'outList' for term in outList repeat setExponentTerms_!(term,rest exponentTerms term) [outList,ordExtreme] dominantTermOnList(termList,ord0,signum) == -- finds dominant term on 'termList' -- it is known that "exponent terms" of order < 'ord0' are -- the same for all terms on 'termList' newList := termsWithExtremeLeadingCoef(termList,ord0,signum) newList case "failed" => "failed" termList := newList :: List Term empty? rest termList => first termList filtered := signum = 1 => filterByOrder(termList,#1 < #2) filterByOrder(termList,#1 > #2) termList := filtered.%list empty? rest termList => first termList dominantTermOnList(termList,filtered.%order,signum) iDominantTerm termList == termRecord := sortAndDiscardTerms termList zeroTerms := termRecord.%zeroTerms infiniteTerms := termRecord.%infiniteTerms failedTerms := termRecord.%failedTerms pSeries := termRecord.%puiseuxSeries -- in future versions, we will deal with "failed terms" -- at present, if any occur, we cannot determine the limit not empty? failedTerms => "failed" not zero? pSeries => [makeTerm(pSeries,0),"series"] not empty? infiniteTerms => empty? rest infiniteTerms => [first infiniteTerms,"infinity"] for term in infiniteTerms repeat computeExponentTerms_! term ord0 := order exponent first infiniteTerms (dTerm := dominantTermOnList(infiniteTerms,ord0,1)) case "failed" => return "failed" [dTerm :: Term,"infinity"] empty? rest zeroTerms => [first zeroTerms,"zero"] for term in zeroTerms repeat computeExponentTerms_! term ord0 := order exponent first zeroTerms (dTerm := dominantTermOnList(zeroTerms,ord0,-1)) case "failed" => return "failed" [dTerm :: Term,"zero"] dominantTerm f == iDominantTerm terms f limitPlus f == -- list the terms occurring in 'f'; if there are none, then f = 0 empty?(termList := terms f) => 0 -- compute dominant term (tInfo := iDominantTerm termList) case "failed" => "failed" termInfo := tInfo :: Record(%term:Term,%type:String) domTerm := termInfo.%term (type := termInfo.%type) = "series" => -- find limit of series term (ord := order(pSeries := coeff domTerm,1)) > 0 => 0 coef := coefficient(pSeries,ord) member?(var,variables coef) => "failed" ord = 0 => coef :: OFE -- in the case of an infinite limit, we need to know the sign -- of the first non-zero coefficient (signum := sign(coef)$SIGNEF) case "failed" => "failed" (signum :: Integer) = 1 => plusInfinity() minusInfinity() type = "zero" => 0 -- examine lowest order coefficient in series part of 'domTerm' ord := order(pSeries := coeff domTerm) coef := coefficient(pSeries,ord) member?(var,variables coef) => "failed" (signum := sign(coef)$SIGNEF) case "failed" => "failed" (signum :: Integer) = 1 => plusInfinity() minusInfinity() @ \section{domain EXPEXPAN ExponentialExpansion} <<domain EXPEXPAN ExponentialExpansion>>= )abbrev domain EXPEXPAN ExponentialExpansion ++ Author: Clifton J. Williamson ++ Date Created: 13 August 1992 ++ Date Last Updated: 27 August 1992 ++ Basic Operations: ++ Related Domains: UnivariatePuiseuxSeries(FE,var,cen), ++ ExponentialOfUnivariatePuiseuxSeries(FE,var,cen) ++ Also See: ++ AMS Classifications: ++ Keywords: limit, functional expression, power series ++ Examples: ++ References: ++ Description: ++ UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to ++ represent essential singularities of functions. Objects in this domain ++ are quotients of sums, where each term in the sum is a univariate Puiseux ++ series times the exponential of a univariate Puiseux series. ExponentialExpansion(R,FE,var,cen): Exports == Implementation where R : Join(OrderedSet,RetractableTo Integer,_ LinearlyExplicitRingOver Integer,GcdDomain) FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_ FunctionSpace R) var : Symbol cen : FE RN ==> Fraction Integer UPXS ==> UnivariatePuiseuxSeries(FE,var,cen) EXPUPXS ==> ExponentialOfUnivariatePuiseuxSeries(FE,var,cen) UPXSSING ==> UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen) OFE ==> OrderedCompletion FE Result ==> Union(OFE,"failed") PxRec ==> Record(k: Fraction Integer,c:FE) Term ==> Record(%coef:UPXS,%expon:EXPUPXS,%expTerms:List PxRec) TypedTerm ==> Record(%term:Term,%type:String) SIGNEF ==> ElementaryFunctionSign(R,FE) Exports ==> Join(QuotientFieldCategory UPXSSING,RetractableTo UPXS) with limitPlus : % -> Union(OFE,"failed") ++ limitPlus(f(var)) returns \spad{limit(var -> a+,f(var))}. coerce: UPXS -> % ++ coerce(f) converts a \spadtype{UnivariatePuiseuxSeries} to ++ an \spadtype{ExponentialExpansion}. Implementation ==> Fraction(UPXSSING) add coeff : Term -> UPXS exponent : Term -> EXPUPXS upxssingIfCan : % -> Union(UPXSSING,"failed") seriesQuotientLimit: (UPXS,UPXS) -> Union(OFE,"failed") seriesQuotientInfinity: (UPXS,UPXS) -> Union(OFE,"failed") Rep := Fraction UPXSSING ZEROCOUNT : RN := 1000/1 coeff term == term.%coef exponent term == term.%expon --!! why is this necessary? --!! code can run forever in retractIfCan if original assignment --!! for 'ff' is used upxssingIfCan f == -- one? denom f => numer f (denom f = 1) => numer f "failed" retractIfCan(f:%):Union(UPXS,"failed") == --ff := (retractIfCan$Rep)(f)@Union(UPXSSING,"failed") --ff case "failed" => "failed" (ff := upxssingIfCan f) case "failed" => "failed" (fff := retractIfCan(ff::UPXSSING)@Union(UPXS,"failed")) case "failed" => "failed" fff :: UPXS f:UPXSSING / g:UPXSSING == (rec := recip g) case "failed" => f /$Rep g f * (rec :: UPXSSING) :: % f:% / g:% == (rec := recip numer g) case "failed" => f /$Rep g (rec :: UPXSSING) * (denom g) * f coerce(f:UPXS) == f :: UPXSSING :: % seriesQuotientLimit(num,den) == -- limit of the quotient of two series series := num / den (ord := order(series,1)) > 0 => 0 coef := coefficient(series,ord) member?(var,variables coef) => "failed" ord = 0 => coef :: OFE (sig := sign(coef)$SIGNEF) case "failed" => return "failed" (sig :: Integer) = 1 => plusInfinity() minusInfinity() seriesQuotientInfinity(num,den) == -- infinite limit: plus or minus? -- look at leading coefficients of series to tell (numOrd := order(num,ZEROCOUNT)) = ZEROCOUNT => "failed" (denOrd := order(den,ZEROCOUNT)) = ZEROCOUNT => "failed" cc := coefficient(num,numOrd)/coefficient(den,denOrd) member?(var,variables cc) => "failed" (sig := sign(cc)$SIGNEF) case "failed" => return "failed" (sig :: Integer) = 1 => plusInfinity() minusInfinity() limitPlus f == zero? f => 0 (den := denom f) = 1 => limitPlus numer f (numerTerm := dominantTerm(num := numer f)) case "failed" => "failed" numType := (numTerm := numerTerm :: TypedTerm).%type (denomTerm := dominantTerm den) case "failed" => "failed" denType := (denTerm := denomTerm :: TypedTerm).%type numExpon := exponent numTerm.%term; denExpon := exponent denTerm.%term numCoef := coeff numTerm.%term; denCoef := coeff denTerm.%term -- numerator tends to zero exponentially (numType = "zero") => -- denominator tends to zero exponentially (denType = "zero") => (exponDiff := numExpon - denExpon) = 0 => seriesQuotientLimit(numCoef,denCoef) expCoef := coefficient(exponDiff,order exponDiff) (sig := sign(expCoef)$SIGNEF) case "failed" => return "failed" (sig :: Integer) = -1 => 0 seriesQuotientInfinity(numCoef,denCoef) 0 -- otherwise limit is zero -- numerator is a Puiseux series (numType = "series") => -- denominator tends to zero exponentially (denType = "zero") => seriesQuotientInfinity(numCoef,denCoef) -- denominator is a series (denType = "series") => seriesQuotientLimit(numCoef,denCoef) 0 -- remaining case: numerator tends to infinity exponentially -- denominator tends to infinity exponentially (denType = "infinity") => (exponDiff := numExpon - denExpon) = 0 => seriesQuotientLimit(numCoef,denCoef) expCoef := coefficient(exponDiff,order exponDiff) (sig := sign(expCoef)$SIGNEF) case "failed" => return "failed" (sig :: Integer) = -1 => 0 seriesQuotientInfinity(numCoef,denCoef) -- denominator tends to zero exponentially or is a series seriesQuotientInfinity(numCoef,denCoef) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain EXPUPXS ExponentialOfUnivariatePuiseuxSeries>> <<domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity>> <<domain EXPEXPAN ExponentialExpansion>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}