\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra equation2.spad} \author{Stephen M. Watt, Johannes Grabmeier} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain EQ Equation} <<domain EQ Equation>>= )abbrev domain EQ Equation --FOR THE BENEFIT OF LIBAX0 GENERATION ++ Author: Stephen M. Watt, enhancements by Johannes Grabmeier ++ Date Created: April 1985 ++ Date Last Updated: June 3, 1991; September 2, 1992 ++ Basic Operations: = ++ Related Domains: ++ Also See: ++ AMS Classifications: ++ Keywords: equation ++ Examples: ++ References: ++ Description: ++ Equations as mathematical objects. All properties of the basis domain, ++ e.g. being an abelian group are carried over the equation domain, by ++ performing the structural operations on the left and on the ++ right hand side. -- The interpreter translates "=" to "equation". Otherwise, it will -- find a modemap for "=" in the domain of the arguments. Equation(S: Type): public == private where Ex ==> OutputForm public ==> Type with "=": (S, S) -> $ ++ a=b creates an equation. equation: (S, S) -> $ ++ equation(a,b) creates an equation. swap: $ -> $ ++ swap(eq) interchanges left and right hand side of equation eq. lhs: $ -> S ++ lhs(eqn) returns the left hand side of equation eqn. rhs: $ -> S ++ rhs(eqn) returns the right hand side of equation eqn. map: (S -> S, $) -> $ ++ map(f,eqn) constructs a new equation by applying f to both ++ sides of eqn. if S has InnerEvalable(Symbol,S) then InnerEvalable(Symbol,S) if S has SetCategory then SetCategory CoercibleTo Boolean if S has Evalable(S) then eval: ($, $) -> $ ++ eval(eqn, x=f) replaces x by f in equation eqn. eval: ($, List $) -> $ ++ eval(eqn, [x1=v1, ... xn=vn]) replaces xi by vi in equation eqn. if S has AbelianSemiGroup then AbelianSemiGroup "+": (S, $) -> $ ++ x+eqn produces a new equation by adding x to both sides of ++ equation eqn. "+": ($, S) -> $ ++ eqn+x produces a new equation by adding x to both sides of ++ equation eqn. if S has AbelianGroup then AbelianGroup leftZero : $ -> $ ++ leftZero(eq) subtracts the left hand side. rightZero : $ -> $ ++ rightZero(eq) subtracts the right hand side. "-": (S, $) -> $ ++ x-eqn produces a new equation by subtracting both sides of ++ equation eqn from x. "-": ($, S) -> $ ++ eqn-x produces a new equation by subtracting x from both sides of ++ equation eqn. if S has SemiGroup then SemiGroup "*": (S, $) -> $ ++ x*eqn produces a new equation by multiplying both sides of ++ equation eqn by x. "*": ($, S) -> $ ++ eqn*x produces a new equation by multiplying both sides of ++ equation eqn by x. if S has Monoid then Monoid leftOne : $ -> Union($,"failed") ++ leftOne(eq) divides by the left hand side, if possible. rightOne : $ -> Union($,"failed") ++ rightOne(eq) divides by the right hand side, if possible. if S has Group then Group leftOne : $ -> Union($,"failed") ++ leftOne(eq) divides by the left hand side. rightOne : $ -> Union($,"failed") ++ rightOne(eq) divides by the right hand side. if S has Ring then Ring BiModule(S,S) if S has CommutativeRing then Module(S) --Algebra(S) if S has IntegralDomain then factorAndSplit : $ -> List $ ++ factorAndSplit(eq) make the right hand side 0 and ++ factors the new left hand side. Each factor is equated ++ to 0 and put into the resulting list without repetitions. if S has PartialDifferentialRing(Symbol) then PartialDifferentialRing(Symbol) if S has Field then VectorSpace(S) "/": ($, $) -> $ ++ e1/e2 produces a new equation by dividing the left and right ++ hand sides of equations e1 and e2. inv: $ -> $ ++ inv(x) returns the multiplicative inverse of x. if S has ExpressionSpace then subst: ($, $) -> $ ++ subst(eq1,eq2) substitutes eq2 into both sides of eq1 ++ the lhs of eq2 should be a kernel private ==> add Rep := Record(lhs: S, rhs: S) eq1,eq2: $ s : S if S has IntegralDomain then factorAndSplit eq == (S has factor : S -> Factored S) => eq0 := rightZero eq [equation(rcf.factor,0) for rcf in factors factor lhs eq0] [eq] l:S = r:S == [l, r] equation(l, r) == [l, r] -- hack! See comment above. lhs eqn == eqn.lhs rhs eqn == eqn.rhs swap eqn == [rhs eqn, lhs eqn] map(fn, eqn) == equation(fn(eqn.lhs), fn(eqn.rhs)) if S has InnerEvalable(Symbol,S) then s:Symbol ls:List Symbol x:S lx:List S eval(eqn,s,x) == eval(eqn.lhs,s,x) = eval(eqn.rhs,s,x) eval(eqn,ls,lx) == eval(eqn.lhs,ls,lx) = eval(eqn.rhs,ls,lx) if S has Evalable(S) then eval(eqn1:$, eqn2:$):$ == eval(eqn1.lhs, eqn2 pretend Equation S) = eval(eqn1.rhs, eqn2 pretend Equation S) eval(eqn1:$, leqn2:List $):$ == eval(eqn1.lhs, leqn2 pretend List Equation S) = eval(eqn1.rhs, leqn2 pretend List Equation S) if S has SetCategory then eq1 = eq2 == (eq1.lhs = eq2.lhs)@Boolean and (eq1.rhs = eq2.rhs)@Boolean coerce(eqn:$):Ex == eqn.lhs::Ex = eqn.rhs::Ex coerce(eqn:$):Boolean == eqn.lhs = eqn.rhs if S has AbelianSemiGroup then eq1 + eq2 == eq1.lhs + eq2.lhs = eq1.rhs + eq2.rhs s + eq2 == [s,s] + eq2 eq1 + s == eq1 + [s,s] if S has AbelianGroup then - eq == (- lhs eq) = (-rhs eq) s - eq2 == [s,s] - eq2 eq1 - s == eq1 - [s,s] leftZero eq == 0 = rhs eq - lhs eq rightZero eq == lhs eq - rhs eq = 0 0 == equation(0$S,0$S) eq1 - eq2 == eq1.lhs - eq2.lhs = eq1.rhs - eq2.rhs if S has SemiGroup then eq1:$ * eq2:$ == eq1.lhs * eq2.lhs = eq1.rhs * eq2.rhs l:S * eqn:$ == l * eqn.lhs = l * eqn.rhs l:S * eqn:$ == l * eqn.lhs = l * eqn.rhs eqn:$ * l:S == eqn.lhs * l = eqn.rhs * l -- We have to be a bit careful here: raising to a +ve integer is OK -- (since it's the equivalent of repeated multiplication) -- but other powers may cause contradictions -- Watch what else you add here! JHD 2/Aug 1990 if S has Monoid then 1 == equation(1$S,1$S) recip eq == (lh := recip lhs eq) case "failed" => "failed" (rh := recip rhs eq) case "failed" => "failed" [lh :: S, rh :: S] leftOne eq == (re := recip lhs eq) case "failed" => "failed" 1 = rhs eq * re rightOne eq == (re := recip rhs eq) case "failed" => "failed" lhs eq * re = 1 if S has Group then inv eq == [inv lhs eq, inv rhs eq] leftOne eq == 1 = rhs eq * inv rhs eq rightOne eq == lhs eq * inv rhs eq = 1 if S has Ring then characteristic() == characteristic()$S i:Integer * eq:$ == (i::S) * eq if S has IntegralDomain then factorAndSplit eq == (S has factor : S -> Factored S) => eq0 := rightZero eq [equation(rcf.factor,0) for rcf in factors factor lhs eq0] (S has Polynomial Integer) => eq0 := rightZero eq MF ==> MultivariateFactorize(Symbol, IndexedExponents Symbol, _ Integer, Polynomial Integer) p : Polynomial Integer := (lhs eq0) pretend Polynomial Integer [equation((rcf.factor) pretend S,0) for rcf in factors factor(p)$MF] [eq] if S has PartialDifferentialRing(Symbol) then differentiate(eq:$, sym:Symbol):$ == [differentiate(lhs eq, sym), differentiate(rhs eq, sym)] if S has Field then dimension() == 2 :: CardinalNumber eq1:$ / eq2:$ == eq1.lhs / eq2.lhs = eq1.rhs / eq2.rhs inv eq == [inv lhs eq, inv rhs eq] if S has ExpressionSpace then subst(eq1,eq2) == eq3 := eq2 pretend Equation S [subst(lhs eq1,eq3),subst(rhs eq1,eq3)] @ \section{package EQ2 EquationFunctions2} <<package EQ2 EquationFunctions2>>= )abbrev package EQ2 EquationFunctions2 ++ Author: ++ Date Created: ++ Date Last Updated: June 3, 1991 ++ Basic Operations: ++ Related Domains: Equation ++ Also See: ++ AMS Classifications: ++ Keywords: equation ++ Examples: ++ References: ++ Description: ++ This package provides operations for mapping the sides of equations. EquationFunctions2(S: Type, R: Type): with map: (S ->R ,Equation S) -> Equation R ++ map(f,eq) returns an equation where f is applied to the sides of eq == add map(fn, eqn) == equation(fn lhs eqn, fn rhs eqn) @ \section{category FEVALAB FullyEvalableOver} <<category FEVALAB FullyEvalableOver>>= )abbrev category FEVALAB FullyEvalableOver ++ Author: ++ Date Created: ++ Date Last Updated: June 3, 1991 ++ Basic Operations: ++ Related Domains: Equation ++ Also See: ++ AMS Classifications: ++ Keywords: equation ++ Examples: ++ References: ++ Description: ++ This category provides a selection of evaluation operations ++ depending on what the argument type R provides. FullyEvalableOver(R:SetCategory): Category == with map: (R -> R, $) -> $ ++ map(f, ex) evaluates ex, applying f to values of type R in ex. if R has Eltable(R, R) then Eltable(R, $) if R has Evalable(R) then Evalable(R) if R has InnerEvalable(Symbol, R) then InnerEvalable(Symbol, R) add if R has Eltable(R, R) then elt(x:$, r:R) == map(#1.r, x) if R has Evalable(R) then eval(x:$, l:List Equation R) == map(eval(#1, l), x) if R has InnerEvalable(Symbol, R) then eval(x:$, ls:List Symbol, lv:List R) == map(eval(#1, ls, lv), x) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> <<domain EQ Equation>> <<package EQ2 EquationFunctions2>> <<category FEVALAB FullyEvalableOver>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}