\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra elemntry.spad} \author{Manuel Bronstein} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{package EF ElementaryFunction} <<package EF ElementaryFunction>>= )abbrev package EF ElementaryFunction ++ Author: Manuel Bronstein ++ Date Created: 1987 ++ Date Last Updated: 10 April 1995 ++ Keywords: elementary, function, logarithm, exponential. ++ Examples: )r EF INPUT ++ Description: Provides elementary functions over an integral domain. ElementaryFunction(R, F): Exports == Implementation where R: IntegralDomain F: Join(FunctionSpace R, RadicalCategory) B ==> Boolean L ==> List Z ==> Integer OP ==> BasicOperator K ==> Kernel F INV ==> error "Invalid argument" Exports ==> with exp : F -> F ++ exp(x) applies the exponential operator to x log : F -> F ++ log(x) applies the logarithm operator to x sin : F -> F ++ sin(x) applies the sine operator to x cos : F -> F ++ cos(x) applies the cosine operator to x tan : F -> F ++ tan(x) applies the tangent operator to x cot : F -> F ++ cot(x) applies the cotangent operator to x sec : F -> F ++ sec(x) applies the secant operator to x csc : F -> F ++ csc(x) applies the cosecant operator to x asin : F -> F ++ asin(x) applies the inverse sine operator to x acos : F -> F ++ acos(x) applies the inverse cosine operator to x atan : F -> F ++ atan(x) applies the inverse tangent operator to x acot : F -> F ++ acot(x) applies the inverse cotangent operator to x asec : F -> F ++ asec(x) applies the inverse secant operator to x acsc : F -> F ++ acsc(x) applies the inverse cosecant operator to x sinh : F -> F ++ sinh(x) applies the hyperbolic sine operator to x cosh : F -> F ++ cosh(x) applies the hyperbolic cosine operator to x tanh : F -> F ++ tanh(x) applies the hyperbolic tangent operator to x coth : F -> F ++ coth(x) applies the hyperbolic cotangent operator to x sech : F -> F ++ sech(x) applies the hyperbolic secant operator to x csch : F -> F ++ csch(x) applies the hyperbolic cosecant operator to x asinh : F -> F ++ asinh(x) applies the inverse hyperbolic sine operator to x acosh : F -> F ++ acosh(x) applies the inverse hyperbolic cosine operator to x atanh : F -> F ++ atanh(x) applies the inverse hyperbolic tangent operator to x acoth : F -> F ++ acoth(x) applies the inverse hyperbolic cotangent operator to x asech : F -> F ++ asech(x) applies the inverse hyperbolic secant operator to x acsch : F -> F ++ acsch(x) applies the inverse hyperbolic cosecant operator to x pi : () -> F ++ pi() returns the pi operator belong? : OP -> Boolean ++ belong?(p) returns true if operator p is elementary operator: OP -> OP ++ operator(p) returns an elementary operator with the same symbol as p -- the following should be local, but are conditional iisqrt2 : () -> F ++ iisqrt2() should be local but conditional iisqrt3 : () -> F ++ iisqrt3() should be local but conditional iiexp : F -> F ++ iiexp(x) should be local but conditional iilog : F -> F ++ iilog(x) should be local but conditional iisin : F -> F ++ iisin(x) should be local but conditional iicos : F -> F ++ iicos(x) should be local but conditional iitan : F -> F ++ iitan(x) should be local but conditional iicot : F -> F ++ iicot(x) should be local but conditional iisec : F -> F ++ iisec(x) should be local but conditional iicsc : F -> F ++ iicsc(x) should be local but conditional iiasin : F -> F ++ iiasin(x) should be local but conditional iiacos : F -> F ++ iiacos(x) should be local but conditional iiatan : F -> F ++ iiatan(x) should be local but conditional iiacot : F -> F ++ iiacot(x) should be local but conditional iiasec : F -> F ++ iiasec(x) should be local but conditional iiacsc : F -> F ++ iiacsc(x) should be local but conditional iisinh : F -> F ++ iisinh(x) should be local but conditional iicosh : F -> F ++ iicosh(x) should be local but conditional iitanh : F -> F ++ iitanh(x) should be local but conditional iicoth : F -> F ++ iicoth(x) should be local but conditional iisech : F -> F ++ iisech(x) should be local but conditional iicsch : F -> F ++ iicsch(x) should be local but conditional iiasinh : F -> F ++ iiasinh(x) should be local but conditional iiacosh : F -> F ++ iiacosh(x) should be local but conditional iiatanh : F -> F ++ iiatanh(x) should be local but conditional iiacoth : F -> F ++ iiacoth(x) should be local but conditional iiasech : F -> F ++ iiasech(x) should be local but conditional iiacsch : F -> F ++ iiacsch(x) should be local but conditional specialTrigs:(F, L Record(func:F,pole:B)) -> Union(F, "failed") ++ specialTrigs(x,l) should be local but conditional localReal?: F -> Boolean ++ localReal?(x) should be local but conditional Implementation ==> add ipi : List F -> F iexp : F -> F ilog : F -> F iiilog : F -> F isin : F -> F icos : F -> F itan : F -> F icot : F -> F isec : F -> F icsc : F -> F iasin : F -> F iacos : F -> F iatan : F -> F iacot : F -> F iasec : F -> F iacsc : F -> F isinh : F -> F icosh : F -> F itanh : F -> F icoth : F -> F isech : F -> F icsch : F -> F iasinh : F -> F iacosh : F -> F iatanh : F -> F iacoth : F -> F iasech : F -> F iacsch : F -> F dropfun : F -> F kernel : F -> K posrem :(Z, Z) -> Z iisqrt1 : () -> F valueOrPole : Record(func:F, pole:B) -> F oppi := operator('pi)$CommonOperators oplog := operator('log)$CommonOperators opexp := operator('exp)$CommonOperators opsin := operator('sin)$CommonOperators opcos := operator('cos)$CommonOperators optan := operator('tan)$CommonOperators opcot := operator('cot)$CommonOperators opsec := operator('sec)$CommonOperators opcsc := operator('csc)$CommonOperators opasin := operator('asin)$CommonOperators opacos := operator('acos)$CommonOperators opatan := operator('atan)$CommonOperators opacot := operator('acot)$CommonOperators opasec := operator('asec)$CommonOperators opacsc := operator('acsc)$CommonOperators opsinh := operator('sinh)$CommonOperators opcosh := operator('cosh)$CommonOperators optanh := operator('tanh)$CommonOperators opcoth := operator('coth)$CommonOperators opsech := operator('sech)$CommonOperators opcsch := operator('csch)$CommonOperators opasinh := operator('asinh)$CommonOperators opacosh := operator('acosh)$CommonOperators opatanh := operator('atanh)$CommonOperators opacoth := operator('acoth)$CommonOperators opasech := operator('asech)$CommonOperators opacsch := operator('acsch)$CommonOperators -- Pi is a domain... Pie, isqrt1, isqrt2, isqrt3: F -- following code is conditionalized on arbitraryPrecesion to recompute in -- case user changes the precision if R has TranscendentalFunctionCategory then Pie := pi()$R :: F else Pie := kernel(oppi, nil()$List(F)) if R has TranscendentalFunctionCategory and R has arbitraryPrecision then pi() == pi()$R :: F else pi() == Pie if R has imaginary: () -> R then isqrt1 := imaginary()$R :: F else isqrt1 := sqrt(-1::F) if R has RadicalCategory then isqrt2 := sqrt(2::R)::F isqrt3 := sqrt(3::R)::F else isqrt2 := sqrt(2::F) isqrt3 := sqrt(3::F) iisqrt1() == isqrt1 if R has RadicalCategory and R has arbitraryPrecision then iisqrt2() == sqrt(2::R)::F iisqrt3() == sqrt(3::R)::F else iisqrt2() == isqrt2 iisqrt3() == isqrt3 ipi l == pi() log x == oplog x exp x == opexp x sin x == opsin x cos x == opcos x tan x == optan x cot x == opcot x sec x == opsec x csc x == opcsc x asin x == opasin x acos x == opacos x atan x == opatan x acot x == opacot x asec x == opasec x acsc x == opacsc x sinh x == opsinh x cosh x == opcosh x tanh x == optanh x coth x == opcoth x sech x == opsech x csch x == opcsch x asinh x == opasinh x acosh x == opacosh x atanh x == opatanh x acoth x == opacoth x asech x == opasech x acsch x == opacsch x kernel x == retract(x)@K posrem(n, m) == ((r := n rem m) < 0 => r + m; r) valueOrPole rec == (rec.pole => INV; rec.func) belong? op == has?(op, 'elem) operator op == is?(op,'pi) => oppi is?(op,'log) => oplog is?(op,'exp) => opexp is?(op,'sin) => opsin is?(op,'cos) => opcos is?(op,'tan) => optan is?(op,'cot) => opcot is?(op,'sec) => opsec is?(op,'csc) => opcsc is?(op,'asin) => opasin is?(op,'acos) => opacos is?(op,'atan) => opatan is?(op,'acot) => opacot is?(op,'asec) => opasec is?(op,'acsc) => opacsc is?(op,'sinh) => opsinh is?(op,'cosh) => opcosh is?(op,'tanh) => optanh is?(op,'coth) => opcoth is?(op,'sech) => opsech is?(op,'csch) => opcsch is?(op,'asinh) => opasinh is?(op,'acosh) => opacosh is?(op,'atanh) => opatanh is?(op,'acoth) => opacoth is?(op,'asech) => opasech is?(op,'acsch) => opacsch error "Not an elementary operator" dropfun x == ((k := retractIfCan(x)@Union(K, "failed")) case "failed") or empty?(argument(k::K)) => 0 first argument(k::K) if R has RetractableTo Z then specialTrigs(x, values) == (r := retractIfCan(y := x/pi())@Union(Fraction Z, "failed")) case "failed" => "failed" q := r::Fraction(Integer) m := minIndex values (n := retractIfCan(q)@Union(Z, "failed")) case Z => even?(n::Z) => valueOrPole(values.m) valueOrPole(values.(m+1)) (n := retractIfCan(2*q)@Union(Z, "failed")) case Z => one?(s := posrem(n::Z, 4)) => valueOrPole(values.(m+2)) valueOrPole(values.(m+3)) (n := retractIfCan(3*q)@Union(Z, "failed")) case Z => one?(s := posrem(n::Z, 6)) => valueOrPole(values.(m+4)) s = 2 => valueOrPole(values.(m+5)) s = 4 => valueOrPole(values.(m+6)) valueOrPole(values.(m+7)) (n := retractIfCan(4*q)@Union(Z, "failed")) case Z => one?(s := posrem(n::Z, 8)) => valueOrPole(values.(m+8)) s = 3 => valueOrPole(values.(m+9)) s = 5 => valueOrPole(values.(m+10)) valueOrPole(values.(m+11)) (n := retractIfCan(6*q)@Union(Z, "failed")) case Z => one?(s := posrem(n::Z, 12)) => valueOrPole(values.(m+12)) s = 5 => valueOrPole(values.(m+13)) s = 7 => valueOrPole(values.(m+14)) valueOrPole(values.(m+15)) "failed" else specialTrigs(x, values) == "failed" isin x == zero? x => 0 y := dropfun x is?(x, opasin) => y is?(x, opacos) => sqrt(1 - y**2) is?(x, opatan) => y / sqrt(1 + y**2) is?(x, opacot) => inv sqrt(1 + y**2) is?(x, opasec) => sqrt(y**2 - 1) / y is?(x, opacsc) => inv y h := inv(2::F) s2 := h * iisqrt2() s3 := h * iisqrt3() u := specialTrigs(x, [[0,false], [0,false], [1,false], [-1,false], [s3,false], [s3,false], [-s3,false], [-s3,false], [s2,false], [s2,false], [-s2,false], [-s2,false], [h,false], [h,false], [-h,false], [-h,false]]) u case F => u :: F kernel(opsin, x) icos x == zero? x => 1 y := dropfun x is?(x, opasin) => sqrt(1 - y**2) is?(x, opacos) => y is?(x, opatan) => inv sqrt(1 + y**2) is?(x, opacot) => y / sqrt(1 + y**2) is?(x, opasec) => inv y is?(x, opacsc) => sqrt(y**2 - 1) / y h := inv(2::F) s2 := h * iisqrt2() s3 := h * iisqrt3() u := specialTrigs(x, [[1,false],[-1,false], [0,false], [0,false], [h,false],[-h,false],[-h,false],[h,false], [s2,false],[-s2,false],[-s2,false],[s2,false], [s3,false], [-s3,false],[-s3,false],[s3,false]]) u case F => u :: F kernel(opcos, x) itan x == zero? x => 0 y := dropfun x is?(x, opasin) => y / sqrt(1 - y**2) is?(x, opacos) => sqrt(1 - y**2) / y is?(x, opatan) => y is?(x, opacot) => inv y is?(x, opasec) => sqrt(y**2 - 1) is?(x, opacsc) => inv sqrt(y**2 - 1) s33 := (s3 := iisqrt3()) / (3::F) u := specialTrigs(x, [[0,false], [0,false], [0,true], [0,true], [s3,false], [-s3,false], [s3,false], [-s3,false], [1,false], [-1,false], [1,false], [-1,false], [s33,false], [-s33, false], [s33,false], [-s33, false]]) u case F => u :: F kernel(optan, x) icot x == zero? x => INV y := dropfun x is?(x, opasin) => sqrt(1 - y**2) / y is?(x, opacos) => y / sqrt(1 - y**2) is?(x, opatan) => inv y is?(x, opacot) => y is?(x, opasec) => inv sqrt(y**2 - 1) is?(x, opacsc) => sqrt(y**2 - 1) s33 := (s3 := iisqrt3()) / (3::F) u := specialTrigs(x, [[0,true], [0,true], [0,false], [0,false], [s33,false], [-s33,false], [s33,false], [-s33,false], [1,false], [-1,false], [1,false], [-1,false], [s3,false], [-s3, false], [s3,false], [-s3, false]]) u case F => u :: F kernel(opcot, x) isec x == zero? x => 1 y := dropfun x is?(x, opasin) => inv sqrt(1 - y**2) is?(x, opacos) => inv y is?(x, opatan) => sqrt(1 + y**2) is?(x, opacot) => sqrt(1 + y**2) / y is?(x, opasec) => y is?(x, opacsc) => y / sqrt(y**2 - 1) s2 := iisqrt2() s3 := 2 * iisqrt3() / (3::F) h := 2::F u := specialTrigs(x, [[1,false],[-1,false],[0,true],[0,true], [h,false], [-h,false], [-h,false], [h,false], [s2,false], [-s2,false], [-s2,false], [s2,false], [s3,false], [-s3,false], [-s3,false], [s3,false]]) u case F => u :: F kernel(opsec, x) icsc x == zero? x => INV y := dropfun x is?(x, opasin) => inv y is?(x, opacos) => inv sqrt(1 - y**2) is?(x, opatan) => sqrt(1 + y**2) / y is?(x, opacot) => sqrt(1 + y**2) is?(x, opasec) => y / sqrt(y**2 - 1) is?(x, opacsc) => y s2 := iisqrt2() s3 := 2 * iisqrt3() / (3::F) h := 2::F u := specialTrigs(x, [[0,true], [0,true], [1,false], [-1,false], [s3,false], [s3,false], [-s3,false], [-s3,false], [s2,false], [s2,false], [-s2,false], [-s2,false], [h,false], [h,false], [-h,false], [-h,false]]) u case F => u :: F kernel(opcsc, x) iasin x == zero? x => 0 one? x => pi() / (2::F) x = -1 => - pi() / (2::F) y := dropfun x is?(x, opsin) => y is?(x, opcos) => pi() / (2::F) - y kernel(opasin, x) iacos x == zero? x => pi() / (2::F) one? x => 0 x = -1 => pi() y := dropfun x is?(x, opsin) => pi() / (2::F) - y is?(x, opcos) => y kernel(opacos, x) iatan x == zero? x => 0 one? x => pi() / (4::F) x = -1 => - pi() / (4::F) x = (r3:=iisqrt3()) => pi() / (3::F) one?(x*r3) => pi() / (6::F) y := dropfun x is?(x, optan) => y is?(x, opcot) => pi() / (2::F) - y kernel(opatan, x) iacot x == zero? x => pi() / (2::F) one? x => pi() / (4::F) x = -1 => 3 * pi() / (4::F) x = (r3:=iisqrt3()) => pi() / (6::F) x = -r3 => 5 * pi() / (6::F) one?(xx:=x*r3) => pi() / (3::F) xx = -1 => 2* pi() / (3::F) y := dropfun x is?(x, optan) => pi() / (2::F) - y is?(x, opcot) => y kernel(opacot, x) iasec x == zero? x => INV one? x => 0 x = -1 => pi() y := dropfun x is?(x, opsec) => y is?(x, opcsc) => pi() / (2::F) - y kernel(opasec, x) iacsc x == zero? x => INV one? x => pi() / (2::F) x = -1 => - pi() / (2::F) y := dropfun x is?(x, opsec) => pi() / (2::F) - y is?(x, opcsc) => y kernel(opacsc, x) isinh x == zero? x => 0 y := dropfun x is?(x, opasinh) => y is?(x, opacosh) => sqrt(y**2 - 1) is?(x, opatanh) => y / sqrt(1 - y**2) is?(x, opacoth) => - inv sqrt(y**2 - 1) is?(x, opasech) => sqrt(1 - y**2) / y is?(x, opacsch) => inv y kernel(opsinh, x) icosh x == zero? x => 1 y := dropfun x is?(x, opasinh) => sqrt(y**2 + 1) is?(x, opacosh) => y is?(x, opatanh) => inv sqrt(1 - y**2) is?(x, opacoth) => y / sqrt(y**2 - 1) is?(x, opasech) => inv y is?(x, opacsch) => sqrt(y**2 + 1) / y kernel(opcosh, x) itanh x == zero? x => 0 y := dropfun x is?(x, opasinh) => y / sqrt(y**2 + 1) is?(x, opacosh) => sqrt(y**2 - 1) / y is?(x, opatanh) => y is?(x, opacoth) => inv y is?(x, opasech) => sqrt(1 - y**2) is?(x, opacsch) => inv sqrt(y**2 + 1) kernel(optanh, x) icoth x == zero? x => INV y := dropfun x is?(x, opasinh) => sqrt(y**2 + 1) / y is?(x, opacosh) => y / sqrt(y**2 - 1) is?(x, opatanh) => inv y is?(x, opacoth) => y is?(x, opasech) => inv sqrt(1 - y**2) is?(x, opacsch) => sqrt(y**2 + 1) kernel(opcoth, x) isech x == zero? x => 1 y := dropfun x is?(x, opasinh) => inv sqrt(y**2 + 1) is?(x, opacosh) => inv y is?(x, opatanh) => sqrt(1 - y**2) is?(x, opacoth) => sqrt(y**2 - 1) / y is?(x, opasech) => y is?(x, opacsch) => y / sqrt(y**2 + 1) kernel(opsech, x) icsch x == zero? x => INV y := dropfun x is?(x, opasinh) => inv y is?(x, opacosh) => inv sqrt(y**2 - 1) is?(x, opatanh) => sqrt(1 - y**2) / y is?(x, opacoth) => - sqrt(y**2 - 1) is?(x, opasech) => y / sqrt(1 - y**2) is?(x, opacsch) => y kernel(opcsch, x) iasinh x == is?(x, opsinh) => first argument kernel x kernel(opasinh, x) iacosh x == is?(x, opcosh) => first argument kernel x kernel(opacosh, x) iatanh x == is?(x, optanh) => first argument kernel x kernel(opatanh, x) iacoth x == is?(x, opcoth) => first argument kernel x kernel(opacoth, x) iasech x == is?(x, opsech) => first argument kernel x kernel(opasech, x) iacsch x == is?(x, opcsch) => first argument kernel x kernel(opacsch, x) iexp x == zero? x => 1 is?(x, oplog) => first argument kernel x before?(x,0) and empty? variables x => inv iexp(-x) h := inv(2::F) i := iisqrt1() s2 := h * iisqrt2() s3 := h * iisqrt3() u := specialTrigs(x / i, [[1,false],[-1,false], [i,false], [-i,false], [h + i * s3,false], [-h + i * s3, false], [-h - i * s3, false], [h - i * s3, false], [s2 + i * s2, false], [-s2 + i * s2, false], [-s2 - i * s2, false], [s2 - i * s2, false], [s3 + i * h, false], [-s3 + i * h, false], [-s3 - i * h, false], [s3 - i * h, false]]) u case F => u :: F kernel(opexp, x) -- THIS DETERMINES WHEN TO PERFORM THE log exp f -> f SIMPLIFICATION -- CURRENT BEHAVIOR: -- IF R IS COMPLEX(S) THEN ONLY ELEMENTS WHICH ARE RETRACTABLE TO R -- AND EQUAL TO THEIR CONJUGATES ARE DEEMED REAL (OVERRESTRICTIVE FOR NOW) -- OTHERWISE (e.g. R = INT OR FRAC INT), ALL THE ELEMENTS ARE DEEMED REAL if (R has imaginary:() -> R) and (R has conjugate: R -> R) then localReal? x == (u := retractIfCan(x)@Union(R, "failed")) case R and (u::R) = conjugate(u::R) else localReal? x == true iiilog x == zero? x => INV one? x => 0 (u := isExpt(x, opexp)) case Record(var:K, exponent:Integer) => rec := u::Record(var:K, exponent:Integer) arg := first argument(rec.var); localReal? arg => rec.exponent * first argument(rec.var); ilog x ilog x ilog x == ((num1 := one?(num := numer x)) or num = -1) and (den := denom x) ~= 1 and empty? variables x => - kernel(oplog, (num1 => den; -den)::F) kernel(oplog, x) if R has ElementaryFunctionCategory then iilog x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iiilog x log(r::R)::F iiexp x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iexp x exp(r::R)::F else iilog x == iiilog x iiexp x == iexp x if R has TrigonometricFunctionCategory then iisin x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isin x sin(r::R)::F iicos x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icos x cos(r::R)::F iitan x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => itan x tan(r::R)::F iicot x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icot x cot(r::R)::F iisec x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isec x sec(r::R)::F iicsc x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icsc x csc(r::R)::F else iisin x == isin x iicos x == icos x iitan x == itan x iicot x == icot x iisec x == isec x iicsc x == icsc x if R has ArcTrigonometricFunctionCategory then iiasin x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasin x asin(r::R)::F iiacos x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacos x acos(r::R)::F iiatan x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iatan x atan(r::R)::F iiacot x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacot x acot(r::R)::F iiasec x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasec x asec(r::R)::F iiacsc x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacsc x acsc(r::R)::F else iiasin x == iasin x iiacos x == iacos x iiatan x == iatan x iiacot x == iacot x iiasec x == iasec x iiacsc x == iacsc x if R has HyperbolicFunctionCategory then iisinh x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isinh x sinh(r::R)::F iicosh x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icosh x cosh(r::R)::F iitanh x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => itanh x tanh(r::R)::F iicoth x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icoth x coth(r::R)::F iisech x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isech x sech(r::R)::F iicsch x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icsch x csch(r::R)::F else iisinh x == isinh x iicosh x == icosh x iitanh x == itanh x iicoth x == icoth x iisech x == isech x iicsch x == icsch x if R has ArcHyperbolicFunctionCategory then iiasinh x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasinh x asinh(r::R)::F iiacosh x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacosh x acosh(r::R)::F iiatanh x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iatanh x atanh(r::R)::F iiacoth x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacoth x acoth(r::R)::F iiasech x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasech x asech(r::R)::F iiacsch x == (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacsch x acsch(r::R)::F else iiasinh x == iasinh x iiacosh x == iacosh x iiatanh x == iatanh x iiacoth x == iacoth x iiasech x == iasech x iiacsch x == iacsch x evaluate(oppi, ipi)$BasicOperatorFunctions1(F) evaluate(oplog, iilog) evaluate(opexp, iiexp) evaluate(opsin, iisin) evaluate(opcos, iicos) evaluate(optan, iitan) evaluate(opcot, iicot) evaluate(opsec, iisec) evaluate(opcsc, iicsc) evaluate(opasin, iiasin) evaluate(opacos, iiacos) evaluate(opatan, iiatan) evaluate(opacot, iiacot) evaluate(opasec, iiasec) evaluate(opacsc, iiacsc) evaluate(opsinh, iisinh) evaluate(opcosh, iicosh) evaluate(optanh, iitanh) evaluate(opcoth, iicoth) evaluate(opsech, iisech) evaluate(opcsch, iicsch) evaluate(opasinh, iiasinh) evaluate(opacosh, iiacosh) evaluate(opatanh, iiatanh) evaluate(opacoth, iiacoth) evaluate(opasech, iiasech) evaluate(opacsch, iiacsch) derivative(opexp, exp) derivative(oplog, inv) derivative(opsin, cos) derivative(opcos, - sin #1) derivative(optan, 1 + tan(#1)**2) derivative(opcot, - 1 - cot(#1)**2) derivative(opsec, tan(#1) * sec(#1)) derivative(opcsc, - cot(#1) * csc(#1)) derivative(opasin, inv sqrt(1 - #1**2)) derivative(opacos, - inv sqrt(1 - #1**2)) derivative(opatan, inv(1 + #1**2)) derivative(opacot, - inv(1 + #1**2)) derivative(opasec, inv(#1 * sqrt(#1**2 - 1))) derivative(opacsc, - inv(#1 * sqrt(#1**2 - 1))) derivative(opsinh, cosh) derivative(opcosh, sinh) derivative(optanh, 1 - tanh(#1)**2) derivative(opcoth, 1 - coth(#1)**2) derivative(opsech, - tanh(#1) * sech(#1)) derivative(opcsch, - coth(#1) * csch(#1)) derivative(opasinh, inv sqrt(1 + #1**2)) derivative(opacosh, inv sqrt(#1**2 - 1)) derivative(opatanh, inv(1 - #1**2)) derivative(opacoth, inv(1 - #1**2)) derivative(opasech, - inv(#1 * sqrt(1 - #1**2))) derivative(opacsch, - inv(#1 * sqrt(1 + #1**2))) @ \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- SPAD files for the functional world should be compiled in the -- following order: -- -- op kl fspace algfunc ELEMNTRY expr <<package EF ElementaryFunction>> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}